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ASYMPTOTIC VANISHING OF SYZYGIES OF ALGEBRAIC VARIETIES

JINHYUNG PARK

Abstract. The purpose of this paper is to prove Ein–Lazarsfeld’s conjecture on as-
ymptotic vanishing of syzygies of algebraic varieties. This result, together with Ein–
Lazarsfeld’s asymptotic nonvanishing theorem, describes the overall picture of asymp-
totic behaviors of the minimal free resolutions of the graded section rings of line bun-
dles on a projective variety as the positivity of the line bundles grows. Previously, Raicu
reduced the problem to the case of products of three projective spaces, and we resolve
this case here.

1. Introduction

Throughout the paper, wework over an algebraically closed field 𝕜 of arbitrary char-
acteristic. Let 𝑋 be a projective variety of dimension 𝑛, and 𝐿 be a very ample line
bundle on 𝑋 which gives rise to an embedding

𝑋 ⊆ ℙ𝐻0(𝑋, 𝐿) = ℙ𝑟,
where 𝑟 = ℎ0(𝑋, 𝐿) − 1. Denote by 𝑆 the homogeneous coordinate ring of ℙ𝑟. Fix a
coherent sheaf 𝐵 on 𝑋 , and let

𝑅 = 𝑅(𝑋, 𝐵; 𝐿) ≔⨁
𝑚∈ℤ

𝐻0(𝑋, 𝐵 ⊗ 𝐿𝑚)

be the graded section 𝑆-module of 𝐵 associated to 𝐿. By the Hilbert syzygy theorem, 𝑅
has a minimal free resolution

0⟵ 𝑅⟵ 𝐸0 ⟵𝐸1 ⟵⋯⟵𝐸𝑟 ⟵0
where

𝐸𝑝 =⨁
𝑞
𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) ⊗𝕜 𝑆(−𝑝 − 𝑞).

The Koszul cohomology group 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) is the space of 𝑝-th syzygies of weight 𝑞.
When 𝐵 = 𝒪𝑋 , we set 𝐾𝑝,𝑞(𝑋, 𝐿) ≔ 𝐾𝑝,𝑞(𝑋,𝒪𝑋 ; 𝐿). After the pioneering work of Green
[21, 22], there has been a considerable amount of work to understand vanishing and
nonvanishing of 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿).
We say that 𝐿 satisfies the property 𝑁𝑘 if 𝐾0,1(𝑋, 𝐿) = 0 and 𝐾𝑝,𝑞(𝑋, 𝐿) = 0 for

0 ≤ 𝑝 ≤ 𝑘 and 𝑞 ≥ 2. The property 𝑁0 means that 𝑋 ⊆ ℙ𝑟 is projectively normal,
and the property 𝑁1 means that the defining ideal of 𝑋 in ℙ𝑟 is generated by quadratic
polynomials. Thus the property 𝑁𝑘 provides a natural framework to generalize classi-
cal results on defining equations of algebraic varieties to the results on their syzygies.
Along this line, Green proved that if 𝑋 is a smooth projective complex curve of genus
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𝑔 and deg 𝐿 ≥ 2𝑔 + 1 + 𝑘, then 𝐿 satisfies the property 𝑁𝑘 (see [21, Theorem (4.a.1)]).
Green’s celebrated theorem has stimulated further work in this direction, and several
analogous statements for higher dimensional algebraic varieties have been established,
e.g. [7,8,11,16,20,22,27]. On the other hand, Green–Lazarsfeld [23,24] andOttaviani–
Paoletti [26] called attention to the failure of the property 𝑁𝑘. The main result of [26]
asserts that

𝐾𝑝,2(ℙ2, 𝒪ℙ2(𝑑)) ≠ 0 for 3𝑑 − 2 ≤ 𝑝 ≤ 𝑟𝑑 − 2,
where 𝑟𝑑 = ℎ0(ℙ2, 𝒪ℙ2(𝑑)) − 1. In particular, 𝒪ℙ2(𝑑) does not satisfy the property
𝑁3𝑑−2. As 𝑟𝑑 ≈ 𝑑2/2, the property 𝑁𝑘 for 𝒪ℙ2(𝑑) describes only a small fraction of
the syzygies of the 𝑑-th Veronese embedding of ℙ2. Eisenbud–Green–Hulek–Popescu
observed in [18, Proposition 3.4] that a similar phenomenon occurs for other smooth
projective surface, and Ein–Lazarsfeld proved in [12, TheoremA] that this always hap-
pens for all smooth projective varieties.
It is an interesting problem to describe the overall asymptotic behaviors of

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) as the positivity of 𝐿 grows. This type of question was first suggested by
Green [21, Problem 5.13] and also considered by Ein–Lazarsfeld [11, Problem 4.4]. To
set the stage for asymptotic syzygies of algebraic varieties, assume that𝑋 is smooth and
𝐵 is a line bundle, and let

𝐿𝑑 ≔ 𝒪𝑋(𝑑𝐴 + 𝑃) for an integer 𝑑 ≥ 1,
where 𝐴 is an ample divisor and 𝑃 is an arbitrary divisor on 𝑋 . We suppose that 𝑑 is
sufficiently large, so in particular, 𝐿𝑑 is very ample. Put 𝑟𝑑 ≔ ℎ0(𝑋, 𝐿𝑑)−1. Elementary
considerations of Castelnuovo–Mumford regularity show that

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) = 0 for 𝑞 ≥ 𝑛 + 2.
When 𝑞 = 0 or 𝑛 + 1, [12, Proposition 5.1 and Corollary 5.2] state that

𝐾𝑝,0(𝑋, 𝐵; 𝐿𝑑) ≠ 0⟺ 0 ≤ 𝑝 ≤ ℎ0(𝐵) − 1;
𝐾𝑝,𝑛+1(𝑋, 𝐵; 𝐿𝑑) ≠ 0⟺ 𝑟𝑑 − 𝑛 − ℎ0(𝑋, 𝐾𝑋 − 𝐵) + 1 ≤ 𝑝 ≤ 𝑟𝑑 − 𝑛.

The main issue is then to study vanishing and nonvanishing of 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) for 1 ≤
𝑞 ≤ 𝑛. Motivated by the nonvanishing results of [18, 26], Ein–Lazarsfeld established
the asymptotic nonvanishing theorem in [12, Theorem 4.1]: For each 1 ≤ 𝑞 ≤ 𝑛, there
are constants 𝐶1, 𝐶2 > 0 such that if 𝑑 is sufficiently large, then

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) ≠ 0 for 𝐶1𝑑𝑞−1 ≤ 𝑝 ≤ 𝑟𝑑 − 𝐶2𝑑𝑛−1.
If furthermore 𝐻𝑖(𝑋, 𝐵) = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1, then

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) ≠ 0 for 𝐶1𝑑𝑞−1 ≤ 𝑝 ≤ 𝑟𝑑 − 𝐶2𝑑𝑛−𝑞;
in this case with 𝑃 = 0, a quick proof is provided in [10] with effective range of 𝑝.
It is worth noting that Zhou adapted the arguments in [12] to show that the asymp-
totic nonvanishing theorem also holds for singular projective varieties with a relaxed
assumption on 𝐵 (see [12, Remark 4.2]). The influential paper [12] opens the door to
research on the asymptotic behaviors of𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) for 𝑑 increasing. We refer to [14]
for survey on recent progress on asymptotic syzygies of algebraic varieties.
It is very natural to ask whether the 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) vanish for the values of 𝑝 outside

the range in the statement of the asymptotic nonvanishing theorem. Ein–Lazarsfeld
conjectured that this is indeed the case for 𝑝 < 𝑂(𝑑𝑞−1) (see [12, Conjecture 7.1], [14,
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Conjecture 1.10]). We confirm this asymptotic vanishing conjecture in a more general
setting.

Theorem 1.1. Let 𝑋 be a projective variety of dimension 𝑛, and 𝐵 be a coherent sheaf on
𝑋 . Fix an ample divisor 𝐴 and an arbitrary divisor 𝑃 on 𝑋 , and put 𝐿𝑑 ≔ 𝒪𝑋(𝑑𝐴 + 𝑃)
for an integer 𝑑 ≥ 1. For each 1 ≤ 𝑞 ≤ 𝑛 + 1, there is a constant 𝐶 > 0 depending on
𝑋,𝐴, 𝐵, 𝑃 such that if 𝑑 is sufficiently large, then

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) = 0 for 0 ≤ 𝑝 ≤ 𝐶𝑑𝑞−1.

We give some remarks on vanishing of 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) for large 𝑝. For simplicity, we
assume that 𝑋 is smooth and 𝐵 is a vector bundle. If 𝐻𝑖(𝑋, 𝐵) = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
then the duality theorem (cf. [12, Proposition 3.5], [21, Theorem 2.c.6]) says that

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) = 𝐾𝑟𝑑−𝑛−𝑝,𝑛+1−𝑞(𝑋, 𝐵∗ ⊗𝜔𝑋 ; 𝐿𝑑)∗.
Then our asymptotic vanishing theorem implies the following: For each 1 ≤ 𝑞 ≤ 𝑛,
there is a constant 𝐶 > 0 such that if 𝑑 is sufficiently large, then

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) = 0 for 𝑝 ≥ 𝑟𝑑 − 𝐶𝑑𝑛−𝑞.
However, if 𝐻𝑞−1(𝑋, 𝐵) ≠ 0 for some 2 ≤ 𝑞 ≤ 𝑛, then 𝐾𝑟𝑑−𝑞+1,𝑞(𝑋, 𝐵; 𝐿𝑑) ≠ 0 for large
𝑑 (see [12, Remark 5.3]). When 𝑋 is a smooth projective complex curve and 𝐵 is a line
bundle, vanishing of weight-one syzygies𝐾𝑝,1(𝑋, 𝐵; 𝐿𝑑) for large 𝑝 is determined by the
duality theorem and [[13], TheoremB] (see also [29]). This implies Green–Lazarsfeld’s
gonality conjecture, and a higher dimensional generalization is treated in the work of
Ein–Lazarsfeld–Yang [15].
Shortly after the asymptotic vanishing conjecture was proposed, Raicu showed in

the appendix of [28] that the general case of the conjecture follows from the case of
products of three projective spaces. The case that 𝑞 = 1 in Theorem 1.1 is trivial. To
prove Theorem 1.1, it is more than enough to establish the following:

Theorem 1.2. Let 𝑘 ≥ 1 be an integer, 𝑛1, . . . , 𝑛𝑘, 𝑑1, . . . , 𝑑𝑘 be positive integers, and 𝑏1,
. . . , 𝑏𝑘 be integers. Set

𝑋 ≔ ℙ𝑛1 ×⋯ × ℙ𝑛𝑘 ,
𝐵 ≔ 𝒪ℙ𝑛1 (𝑏1) ⊠⋯⊠𝒪ℙ𝑛𝑘 (𝑏𝑘),
𝐿 ≔ 𝒪ℙ𝑛1 (𝑑1) ⊠⋯⊠𝒪ℙ𝑛𝑘 (𝑑𝑘),

and 𝑏 ≔ min{𝑏1, . . . , 𝑏𝑘}, 𝑑 ≔ min{𝑑1, . . . , 𝑑𝑘}. For each 2 ≤ 𝑞 ≤ 𝑛1 +⋯ + 𝑛𝑘 + 1, if
𝑑 + 𝑏 ≥ 0, then

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 0 for 0 ≤ 𝑝 ≤ (1/𝑛1!⋯𝑛𝑘! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2).

As 𝐾𝑝,𝑞+1(𝑋, 𝐵; 𝐿) = 𝐾𝑝,𝑞(𝑋, 𝐵 + 𝐿; 𝐿), it is reasonable to assume that 𝑏 < 𝑑 in
Theorem 1.2. But we do not need this assumption for the proof.
We give a sketch of the proof of Theorem 1.2 for the Veronese case. Let𝑀𝒪ℙ𝑛 (𝑑) be

the kernel of the evaluation map 𝐻0(ℙ𝑛, 𝒪ℙ𝑛(𝑑)) ⊗ 𝒪ℙ𝑛 → 𝒪ℙ𝑛(𝑑). It is well known
that

𝐾𝑝,𝑞(ℙ𝑛, 𝒪ℙ𝑛(𝑑)) = 𝐻𝑞−1(ℙ𝑛, ∧𝑝+𝑞−1𝑀𝒪ℙ𝑛 (𝑑)(𝑑)) for 𝑝 ≥ 0 and 𝑞 ≥ 2.
Themain idea is to work onℙ𝑛−1×ℙ1 instead ofℙ𝑛 via the finite map 𝜎∶ ℙ𝑛−1×ℙ1 →
ℙ𝑛 given by (𝜉, 𝑧) ↦ 𝜉 + 𝑧, where ℙ𝑛 is regarded as the Hilbert scheme of 𝑛 points on
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ℙ1 and 𝜎 is the universal family. Note that 𝜎∗(𝒪ℙ𝑛−1 ⊠𝒪ℙ1(𝑛 − 1)) = 𝒪⊕𝑛
ℙ𝑛 . For each

2 ≤ 𝑞 ≤ 𝑛 + 1, the problem is equivalent to showing that

𝐻𝑞−1(ℙ𝑛−1 × ℙ1, ∧𝑝+𝑞−1𝜎∗𝑀𝒪ℙ𝑛 (𝑑) ⊗𝒪ℙ𝑛−1(𝑑) ⊠ 𝒪ℙ1(𝑑 + 𝑛 − 1)) = 0
for 0 ≤ 𝑝 ≤ 𝑂(𝑑𝑞−1).

An advantage of working on ℙ𝑛−1 × ℙ1 is that we can use the following short exact
sequence

0⟶⨁𝒪ℙ𝑛−1 ⊠𝒪ℙ1(−𝑛)⟶ 𝜎∗𝑀𝒪ℙ𝑛 (𝑑) ⟶𝑀𝒪ℙ𝑛−1 (𝑑) ⊠𝒪ℙ1(𝑑)⟶ 0,
which provides a way to proceed by induction on 𝑛. By considering the natural filtra-
tion of ∧𝑝+𝑞−1𝜎∗𝑀𝒪ℙ𝑛 (𝑑), we reduce the problem to proving that

𝐻𝑞−1(ℙ𝑛−1 × ℙ1, ∧𝑖𝑀𝒪ℙ𝑛−1 (𝑑)(𝑑) ⊠ 𝒪ℙ1(𝑎𝑖)) = 0 for 0 ≤ 𝑖 ≤ 𝑂(𝑑𝑞−1),
where 𝑎𝑖 = 𝑖𝑑 − (𝑝 + 𝑞 − 1 − 𝑖)𝑛 + 𝑑 + 𝑛 − 1. By induction on 𝑛, we can assume that
𝐻𝑗(ℙ𝑛−1, ∧𝑖𝑀𝒪ℙ𝑛−1 (𝑑)(𝑑)) = 0 for 0 ≤ 𝑖 ≤ 𝑂(𝑑𝑗) and 𝑗 = 𝑞 − 2, 𝑞 − 1. By the Künneth
formula, it is sufficient to check that

𝐻1(ℙ1, 𝒪ℙ1(𝑎𝑖)) = 0 when 𝑖 ≥ 𝑂(𝑑𝑞−2).
But we have

𝑎𝑖 = 𝑖𝑑 + (𝑑 + 2𝑛 + 𝑖𝑛 − 𝑞𝑛) − 1 − 𝑝𝑛 ≥ 𝑂(𝑑𝑞−1) − 1 − 𝑝𝑛 ≥ −1
as soon as 0 ≤ 𝑝 ≤ 𝑂(𝑑𝑞−1). Thus 𝐾𝑝,𝑞(ℙ𝑛, 𝒪ℙ𝑛(𝑑)) = 0 for this range of 𝑝. The same
argument works for the general Segre–Veronese case.
There has been a great deal of attention to the syzygies ofVeronese or Segre–Veronese

embeddings, e.g. [4,6–8,19,25,26,28,30]. The syzygies of these varieties have connec-
tions to representation theory and combinatorics. It would be exceedingly interesting
to know whether the method of the present paper could make progress on the study of
the Veronese or Segre–Veronese syzygies.
The paper is organized as follows. After reviewing basic necessary facts in Section 2,

we prove Theorem 1.2 in Section 3, where we also show Theorem 1.1 following Raicu’s
argument in [28]. Section 4 is devoted to presenting some open problems on asymptotic
syzygies of algebraic varieties.

2. Preliminaries

We collect basic facts which are used to prove the main theorems of the paper.

2.1. Koszul cohomology. Let 𝑋 be a projective variety, 𝐵 be a coherent sheaf on 𝑋 ,
and 𝐿 be a very ample line bundle on 𝑋 , which gives an embedding

𝑋 ⊆ ℙ𝐻0(𝑋, 𝐿) = ℙ𝑟.
Let 𝑆 ≔ 𝑆(𝐻0(𝑋, 𝐿)) = ⨁𝑚≥0 𝑆𝑚𝐻0(𝑋, 𝐿) be the homogeneous coordinate ring of ℙ𝑟,
and

𝑅 = 𝑅(𝑋, 𝐵; 𝐿) ≔⨁
𝑚∈ℤ

𝐻0(𝑋, 𝐵 ⊗ 𝐿𝑚)

be the graded section 𝑆-module of 𝐵 associated to 𝐿. Denote by 𝑆+ ⊆ 𝑆 the irrelevant
maximal ideal, and define the Koszul cohomology group to be

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) ≔ Tor𝑆𝑝(𝑅, 𝑆/𝑆+)𝑝+𝑞.
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Then 𝑅 has a minimal free resolution
0⟵ 𝑅⟵ 𝐸0 ⟵𝐸1 ⟵⋯⟵𝐸𝑟 ⟵0

where
𝐸𝑝 =⨁

𝑞
𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) ⊗𝕜 𝑆(−𝑝 − 𝑞).

Notice that 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) is the vector space of 𝑝-th syzygies of weight 𝑞 and it is the
cohomology of the Koszul-type complex

∧𝑝+1𝐻0(𝑋, 𝐿) ⊗ 𝐻0(𝑋, 𝐵 ⊗ 𝐿𝑞−1)⟶ ∧𝑝𝐻0(𝑋, 𝐿) ⊗ 𝐻0(𝑋, 𝐵 ⊗ 𝐿𝑞)
⟶ ∧𝑝−1𝐻0(𝑋, 𝐿) ⊗ 𝐻0(𝑋, 𝐵 ⊗ 𝐿𝑞+1).

When 𝐵 = 𝒪𝑋 , we set 𝐾𝑝,𝑞(𝑋, 𝐿) ≔ 𝐾𝑝,𝑞(𝑋,𝒪𝑋 ; 𝐿).
Now, let 𝐿 be a globally generated line bundle on a projective variety 𝑋 . Consider

the evaluation map
ev∶ 𝐻0(𝑋, 𝐿) ⊗ 𝒪𝑋 ⟶𝐿,

which is surjective since 𝐿 is globally generated. Denote by 𝑀𝐿 the kernel bundle of
the evaluation map ev. Then we obtain a short exact sequence of vector bundles on 𝑋 :
(2.1) 0⟶𝑀𝐿 ⟶𝐻0(𝑋, 𝐿) ⊗ 𝒪𝑋 ⟶𝐿⟶ 0.
We use the following well-known fact to compute the Koszul cohomology group.

Proposition 2.1 (cf. [12, Corollary 3.3]). Let 𝑋 be a projective variety, 𝐵 be a coherent
sheaf on 𝑋 , and 𝐿 be a very ample line bundle on 𝑋 . Assume that𝐻𝑖(𝑋, 𝐵 ⊗ 𝐿𝑚) = 0 for
𝑖 > 0 and𝑚 > 0. Fix 𝑞 ≥ 2. Then we have

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 𝐻𝑞−1(𝑋, ∧𝑝+𝑞−1𝑀𝐿 ⊗ 𝐵 ⊗ 𝐿) for 𝑝 ≥ 0.
In particular, 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 0 for 0 ≤ 𝑝 ≤ 𝑝0 if and only if

𝐻𝑞−1(𝑋, ∧𝑗𝑀𝐿 ⊗ 𝐵 ⊗ 𝐿) = 0 for 0 ≤ 𝑗 ≤ 𝑝0 + 𝑞 − 1.

Proof. By taking wedge product of (2.1), we have a short exact sequence
(2.2) 0⟶ ∧𝑝+1𝑀𝐿 ⟶∧𝑝+1𝐻0(𝑋, 𝐿) ⊗ 𝒪𝑋 ⟶∧𝑝𝑀𝐿 ⊗ 𝐿⟶ 0.
By using the Koszul-type complex and chasing through the diagram, we see that

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 𝐻1(𝑋, ∧𝑝+1𝑀𝐿 ⊗ 𝐵 ⊗ 𝐿𝑞−1) for 𝑝 ≥ 0 and 𝑞 ≥ 2.
See [3, Section 2.1] or [11, Section 1] for the complete proof. Now, from (2.2), we find
that

𝐻1(𝑋, ∧𝑝+1𝑀𝐿 ⊗ 𝐵 ⊗ 𝐿𝑞−1) = 𝐻2(𝑋, ∧𝑝+2𝑀𝐿 ⊗ 𝐵 ⊗ 𝐿𝑞−2)
= ⋯
= 𝐻𝑞−1(𝑋, ∧𝑝+𝑞−1𝑀𝐿 ⊗ 𝐵 ⊗ 𝐿),

so the first assertion holds. Thus 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 0 for 0 ≤ 𝑝 ≤ 𝑝0 if and only if
𝐻𝑞−1(𝑋, ∧𝑗𝑀𝐿 ⊗ 𝐵 ⊗ 𝐿) = 0 for 𝑞 − 1 ≤ 𝑗 ≤ 𝑝0 + 𝑞 − 1.

But we get from (2.2) that
𝐻𝑞−1(𝑋, ∧𝑖𝑀𝐿⊗𝐵⊗𝐿) = 𝐻𝑞−2(𝑋, ∧𝑖−1𝑀𝐿⊗𝐵⊗𝐿2) = ⋯ = 𝐻𝑞−𝑖−1(𝑋, 𝐵⊗𝐿𝑖+1) = 0
for any 0 ≤ 𝑖 ≤ 𝑞 − 2. Thus the second assertion holds. □



138 JINHYUNG PARK

We refer to [3, 11, 12, 17, 21] for more details on syzygies and Koszul cohomology.

2.2. Filtrations for wedge products. For a short exact sequence 0 → 𝑈 → 𝑉 →
𝑊 → 0 of vector bundles on a projective variety 𝑋 and an integer 𝑘 ≥ 1, there is a
natural filtration

(2.3) 0 = 𝐹0 ⊆ 𝐹1 ⊆ ⋯ ⊆ 𝐹𝑘 ⊆ 𝐹𝑘+1 = ∧𝑘𝑉

such that
𝐹𝑝+1/𝐹𝑝 = ∧𝑘−𝑝𝑈 ⊗ ∧𝑝𝑊 for all 0 ≤ 𝑝 ≤ 𝑘.

Lemma 2.2. Let 0 → 𝑈 → 𝑉 → 𝑊 → 0 be a short exact sequence of vector bundles on a
projective variety𝑋 . If𝐻𝑞(𝑋, ∧𝑘−𝑝𝑈⊗∧𝑝𝑊) = 0 for all 0 ≤ 𝑝 ≤ 𝑘, then𝐻𝑞(𝑋, ∧𝑘𝑉) = 0.

Proof. By considering the natural filtration (2.3), we immediately obtain the lemma.
□

2.3. Divided and symmetric powers. Let 𝑉 be a finite dimensional vector space
over 𝕜. For an integer 𝑛 ≥ 1, the symmetric group 𝔖𝑛 naturally acts on the tensor
power 𝑇𝑛𝑉 ≔ 𝑉⊗𝑛 by permuting the factors. The divided power of 𝑉 is the subspace

𝐷𝑛𝑉 ≔ {𝜔 ∈ 𝑇𝑛𝑉 ∣ 𝜎(𝜔) = 𝜔 for all 𝜎 ∈ 𝔖𝑛} ⊆ 𝑇𝑛𝑉,

while the symmetric power 𝑆𝑛𝑉 of 𝑉 is the quotient of 𝑇𝑛𝑉 by the subspace spanned
by 𝜎(𝜔) −𝜔 for all 𝜔 ∈ 𝑇𝑛𝑉 and 𝜎 ∈ 𝔖𝑛. When 𝑛 = 0, we set 𝑇0𝑉 = 𝐷0𝑉 = 𝑆0𝑉 = 𝕜.
We have a natural identification

𝐷𝑛𝑉 = (𝑆𝑛𝑉∗)∗.

By composing the inclusion of 𝐷𝑛𝑉 into 𝑇𝑛𝑉 with the projection onto 𝑆𝑛𝑉 , we have
a natural map 𝐷𝑛𝑉 → 𝑆𝑛𝑉 . This map is an isomorphism in characteristic zero, but
it may be neither injective nor surjective in general. We can also define divided and
symmetric powers of vector bundles on projective varieties. We refer to [2, Section 3]
for more details.
Let 0 → 𝑈 → 𝑉 → 𝑊 → 0 be a short exact sequence of vector bundles on a

projective variety 𝑋 with rank𝑊 = 1. Let 𝜋∶ ℙ(𝑉∗) → 𝑋 be the natural projection.
Note that 𝒪ℙ(𝑉∗)(−ℙ(𝑈∗)) = 𝒪ℙ(𝑉∗)(−1) ⊗ 𝜋∗𝑊 ∗. For 𝑘 ≥ 0, we have a short exact
sequence on ℙ(𝑉∗):

0⟶ 𝒪ℙ(𝑉∗)(𝑘) ⊗ 𝜋∗𝑊 ∗ ⟶𝒪ℙ(𝑉∗)(𝑘 + 1)⟶ 𝒪ℙ(𝑈∗)(𝑘 + 1)⟶ 0.

By applying 𝜋∗, we get a short exact sequence on 𝑋 :

0⟶ 𝑆𝑘𝑉∗ ⊗𝑊 ∗ ⟶𝑆𝑘+1𝑉∗ ⟶𝑆𝑘+1𝑈∗ ⟶0.

This construction was suggested by Lawrence Ein, and a purely algebraic construction
of this kind of exact sequence can be found in [1, Corollary V.1.15]. By taking the dual,
we obtain a short exact sequence on 𝑋 :

(2.4) 0⟶ 𝐷𝑘+1𝑈 ⟶𝐷𝑘+1𝑉 ⟶ 𝐷𝑘𝑉 ⊗𝑊 ⟶ 0.

We remark that 𝑆𝑘+1𝑉 → 𝑆𝑘𝑉 ⊗𝑊 may not be surjective in positive characteristic.



ASYMPTOTIC VANISHING OF SYZYGIES 139

Now, let 𝐶 be a smooth projective curve, and 𝐿 be a line bundle on 𝐶. For an integer
𝑘 ≥ 0, the symmetric group𝔖𝑘+1 naturally acts on the (𝑘+1)-th ordinary product𝐶𝑘+1

of 𝐶 by permuting the components, and the line bundle

𝐿⊠𝑘+1 ≔ 𝐿⊠⋯⊠𝐿⏟⎵⎵⏟⎵⎵⏟
𝑘 + 1 times

on 𝐶𝑘+1 descends to a line bundle 𝑇𝑘+1(𝐿) on the (𝑘 + 1)-th symmetric product 𝐶𝑘+1
of 𝐶 (see [16, Subsection 3.1]). Note that

𝐻0(𝐶𝑘+1, 𝑇𝑘+1(𝐿)) = 𝐻0(𝐶𝑘+1, 𝐿⊠𝑘+1)𝔖𝑘+1 = 𝐷𝑘+1𝐻0(𝐶, 𝐿).
If 𝐶 = ℙ1 and 𝐿 = 𝒪ℙ1(𝑑) with 𝑑 ≥ 1, then (ℙ1)𝑛 = ℙ𝑛 and 𝑇𝑛(𝒪ℙ1(𝑑)) = 𝒪ℙ𝑛(𝑑).
By an arbitrary characteristic version of Hermite reciprocity (see [2, Remark 3.2]), we
have

𝐻0(ℙ𝑛, 𝑇𝑛(𝒪ℙ1(𝑑))) = 𝐷𝑛𝐻0(ℙ1, 𝒪ℙ1(𝑑))
= 𝐷𝑛(𝑆𝑑𝐻0(ℙ1, 𝒪ℙ1(1)))
= 𝑆𝑑(𝐷𝑛𝐻0(ℙ1, 𝒪ℙ1(1)))
= 𝑆𝑑𝐻0(ℙ𝑛, 𝑇𝑛(𝒪ℙ1(1))).

2.4. Tautological bundles on projective spaces. Recall that 𝜎∶ ℙ𝑛−1 ×ℙ1 → ℙ𝑛 is
the finite map of degree 𝑛 given by (𝜉, 𝑧) ↦ 𝜉 + 𝑧 by viewing ℙ𝑛 as the Hilbert scheme
of 𝑛 points on ℙ1. For any integer 𝑘, the tautological bundle on ℙ𝑛 is defined as

𝐸𝑛,𝒪ℙ1 (𝑘) ≔ 𝜎∗(𝒪ℙ𝑛−1 ⊠𝒪ℙ1(𝑘)),
which is a vector bundle of rank 𝑛. The tautological bundles on symmetric products of
curves play an important role in the study of secant varieties of curves (see [16]).

Lemma 2.3. 𝐸𝑛,𝒪ℙ1 (𝑘) is splitting if and only if −1 ≤ 𝑘 ≤ 𝑛 − 1. In this case,

𝐸𝑛,𝒪ℙ1 (𝑘) = 𝒪⊕𝑘+1
ℙ𝑛 ⊕𝒪ℙ𝑛(−1)⊕𝑛−1−𝑘.

Proof. Since 𝜎∶ ℙ𝑛−1 × ℙ1 → ℙ𝑛 is a finite map, we have
𝐻𝑖(ℙ𝑛, 𝐸𝑛,𝒪ℙ1 (𝑘)(𝑚)) = 𝐻𝑖(ℙ𝑛−1 × ℙ1, 𝒪ℙ𝑛−1(𝑚) ⊠ 𝒪ℙ1(𝑚 + 𝑘)).

for any 𝑖 ≥ 0 and𝑚 ∈ ℤ. The Künneth formula shows that
𝐻𝑖(ℙ𝑛−1 × ℙ1, 𝒪ℙ𝑛−1(𝑚) ⊠ 𝒪ℙ1(𝑚 + 𝑘))

= (𝐻𝑖−1(ℙ𝑛−1, 𝒪ℙ𝑛−1(𝑚)) ⊗ 𝐻1(ℙ1, 𝒪ℙ1(𝑚 + 𝑘)))
⊕ (𝐻𝑖(ℙ𝑛−1, 𝒪ℙ𝑛−1(𝑚)) ⊗ 𝐻0(ℙ1, 𝒪ℙ1(𝑚 + 𝑘))).

Then we see that

𝐻𝑖(ℙ𝑛, 𝐸𝑛,𝒪ℙ1 (𝑘)(𝑚)) = 0 for 2 ≤ 𝑖 ≤ 𝑛 − 2 and𝑚 ∈ ℤ,
𝐻1(ℙ𝑛, 𝐸𝑛,𝒪ℙ1 (𝑘)(𝑚)) = 0 for𝑚 ∈ ℤ⟺ 𝑘 ≥ −1,

𝐻𝑛−1(ℙ𝑛, 𝐸𝑛,𝒪ℙ1 (𝑘)(𝑚)) = 0 for𝑚 ∈ ℤ⟺ 𝑘 ≤ 𝑛 − 1.
By the Horrocks criterion, the first assertion of the lemma follows. Now, we observe
that

ℎ0(ℙ𝑛, 𝐸𝑛,𝒪ℙ1 (𝑘)) = 𝑘 + 1,
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and

ℎ0(ℙ𝑛, 𝐸𝑛,𝒪ℙ1 (𝑘)(1)) = 𝑛(𝑘 + 2)
= (𝑛 + 1)(𝑘 + 1) + 𝑛 − 1 − 𝑘.

This implies the second assertion of the lemma. □

Remark 2.4. The following alternative approach to Lemma 2.3 was suggested by
Lawrence Ein. Let 𝐷𝑛 be the image of the injective map ℙ𝑛−1 ×ℙ1 → ℙ𝑛 ×ℙ1 given by
(𝜉, 𝑧) ↦ (𝜉 + 𝑧, 𝑧). Note that 𝒪ℙ𝑛×ℙ1(−𝐷𝑛) = 𝒪ℙ𝑛(−1) ⊠ 𝒪ℙ1(−𝑛). For any integer 𝑘,
we have a short exact sequence on ℙ𝑛 × ℙ1:

0⟶ 𝒪ℙ𝑛(−1) ⊠ 𝒪ℙ1(𝑘 − 𝑛)⟶ 𝒪ℙ𝑛 ⊠𝒪ℙ1(𝑘)⟶ 𝒪ℙ𝑛−1 ⊠𝒪ℙ1(𝑘)⟶ 0.
Let 𝑝∶ ℙ𝑛 ×ℙ1 → ℙ𝑛 be the projection to the first component. When −1 ≤ 𝑘 ≤ 𝑛− 1,
by applying 𝑝∗, we obtain a short exact sequence on ℙ𝑛:
0⟶ 𝐻0(ℙ1, 𝒪ℙ1(𝑘)) ⊗ 𝒪ℙ𝑛 ⟶𝐸𝑛,𝒪ℙ1 (𝑘) ⟶𝐻1(ℙ1, 𝒪ℙ1(𝑘 − 𝑛)) ⊗ 𝒪ℙ𝑛(−1)⟶ 0.
Thus

𝐸𝑛,𝒪ℙ1 (𝑘) = (𝐻0(ℙ1, 𝒪ℙ1(𝑘)) ⊗ 𝒪ℙ𝑛) ⊕ (𝐻1(ℙ1, 𝒪ℙ1(𝑘 − 𝑛)) ⊗ 𝒪ℙ𝑛(−1)).
When 𝑘 ≤ −2 or 𝑘 ≥ 𝑛, it is easy to check that 𝐸𝑛,𝒪ℙ1 (𝑘) is not splitting.

Lemma 2.5. Let 𝑌 be a projective variety, and 𝜎∶ 𝑌 ×ℙ𝑛−1 ×ℙ1 → 𝑌 ×ℙ𝑛 be the finite
map given by (𝑦, 𝜉, 𝑧) ↦ (𝑦, 𝜉 + 𝑧). If𝑀 is a vector bundle on 𝑌 × ℙ𝑛, then
𝐻𝑞(𝑌 × ℙ𝑛,𝑀) = 0 ⟺ 𝐻𝑞(𝑌 × ℙ𝑛−1 × ℙ1, 𝜎∗𝑀 ⊗ (𝒪𝑌×ℙ𝑛−1 ⊠𝒪ℙ1(𝑛 − 1))) = 0

for any 𝑞 ≥ 0.

Proof. By Lemma 2.3 and the projection formula,

𝜎∗(𝜎∗𝑀 ⊗ (𝒪𝑌×ℙ𝑛−1 ⊠𝒪ℙ1(𝑛 − 1))) = 𝑀⊕𝑛.
Since 𝜎 is a finite map, the assertion immediately follows. □

3. Asymptotic vanishing theorem

The aim of this section is to prove Theorem 1.1. First, we construct a short exact
sequence of vector bundles, which allows us to give a quick proof of Theorem 1.2 by
induction on dimension. We then explain how one can deduce Theorem 1.1 from The-
orem 1.2.

3.1. Short exact sequence. Let𝐶 be a smooth projective curve, and 𝐿𝐶 be a line bun-
dle on 𝐶. Let 𝑌 be a smooth projective variety, and 𝐿𝑌 be a line bundle on 𝑌 . Fix an
integer 𝑘 ≥ 0. Assume that the line bundle 𝐿𝑌 ⊠ 𝑇𝑘+1(𝐿𝐶) on 𝑌 × 𝐶𝑘+1 is globally
generated. Notice that

𝐻0(𝑌 × 𝐶𝑘+1, 𝐿𝑌 ⊠𝑇𝑘+1(𝐿𝐶)) = 𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝐻0(𝐶, 𝐿𝐶).
We have a short exact sequence on 𝑌 × 𝐶𝑘+1:
0⟶𝑀𝐿𝑌⊠𝑇𝑘+1(𝐿𝐶) ⟶𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝐻0(𝐶, 𝐿𝐶) ⊗ 𝒪𝑌×𝐶𝑘+1 ⟶𝐿𝑌 ⊠𝑇𝑘+1(𝐿𝐶)
⟶ 0.
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We can view 𝐶𝑘+1 = {effective divisors of degree 𝑘 + 1 on 𝐶} as the Hilbert scheme of
𝑘 + 1 points on 𝐶. Let

𝜎∶ 𝑌 × 𝐶𝑘 × 𝐶 ⟶ 𝑌 × 𝐶𝑘+1
be the finite morphism given by (𝑦, 𝜉, 𝑧) ↦ (𝑦, 𝜉 + 𝑧), and 𝑝∶ 𝑌 × 𝐶𝑘 × 𝐶 → 𝐶 be the
projection to the last component. By taking 𝜎∗ of the above exact sequence on 𝑌×𝐶𝑘+1,
we get a short exact sequence on 𝑌 × 𝐶𝑘 × 𝐶:

0 → 𝜎∗𝑀𝐿𝑌⊠𝑇𝑘+1(𝐿𝐶) → 𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝐻0(𝐶, 𝐿𝐶) ⊗ 𝒪𝑌×𝐶𝑘×𝐶

→ 𝐿𝑌 ⊠𝑇𝑘(𝐿𝐶) ⊠ 𝐿𝐶 → 0,

By taking 𝑝∗ and considering (2.4), we get a short exact sequence on 𝐶:

0 → 𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝑀𝐿𝐶 → 𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝐻0(𝐶, 𝐿𝐶) ⊗ 𝒪𝐶

→ 𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘𝐻0(𝐶, 𝐿𝐶) ⊗ 𝐿𝐶 → 0.

Thenwe obtain the following commutative diagramwith exact sequences on𝑌×𝐶𝑘×𝐶:

0

��
0

��

𝑀𝐿𝑌⊠𝑇𝑘(𝐿𝐶) ⊠𝐿𝐶

��
0 // 𝑝∗(𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝑀𝐿𝐶 ) //

��

𝑝∗(𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝐻0(𝐶, 𝐿𝐶) ⊗ 𝒪𝐶) // 𝑝∗(𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘𝐻0(𝐶, 𝐿𝐶) ⊗ 𝐿𝐶) //

��

0

0 // 𝜎∗𝑀𝐿𝑌⊠𝑇𝑘+1(𝐿𝐶)
//

��

𝐻0(𝑌, 𝐿𝑌 ) ⊗ 𝐷𝑘+1𝐻0(𝐶, 𝐿𝐶) ⊗ 𝒪𝑌×𝐶𝑘×𝐶
// 𝐿𝑌 ⊠𝑇𝑘(𝐿𝐶) ⊠ 𝐿𝐶 //

��

0

𝑀𝐿𝑌⊠𝑇𝑘(𝐿𝐶) ⊠𝐿𝐶

��

0

0

Now, assume that 𝐶 = ℙ1 and 𝐿𝐶 = 𝒪ℙ1(𝑑) with 𝑑 ≥ 1. For an integer 𝑛 ≥ 1, we
have

(ℙ1)𝑛 = ℙ𝑛, 𝑇𝑛(𝒪ℙ1(𝑑)) = 𝒪ℙ𝑛(𝑑), 𝑀𝐿𝑌⊠𝑇𝑛(𝒪ℙ1 (𝑑)) = 𝑀𝐿𝑌⊠𝒪ℙ𝑛 (𝑑).
Since𝑀𝒪ℙ1 (𝑑) =⨁𝒪ℙ1(−1), it follows that

𝐷𝑛𝑀𝒪ℙ1 (𝑑) = (𝑆𝑛𝑀∗
𝒪ℙ1 (𝑑)

)∗ =⨁𝒪ℙ1(−𝑛).

Then the left vertical short exact sequence in the above commutative diagram gives a
short exact sequence on 𝑌 × ℙ𝑛−1 × ℙ1:
(3.1)
0⟶⨁𝒪𝑌×ℙ𝑛−1 ⊠𝒪ℙ1(−𝑛)⟶ 𝜎∗𝑀𝐿𝑌⊠𝒪ℙ𝑛 (𝑑) ⟶𝑀𝐿𝑌⊠𝒪ℙ𝑛−1 (𝑑)⊠𝒪ℙ1(𝑑)⟶ 0.

When 𝑌 is a point, the exact sequence (3.1) is

0⟶⨁𝒪ℙ𝑛−1 ⊠𝒪ℙ1(−𝑛)⟶ 𝜎∗𝑀𝒪ℙ𝑛 (𝑑) ⟶𝑀𝒪ℙ𝑛−1 (𝑑) ⊠𝒪ℙ1(𝑑)⟶ 0.

When 𝑛 = 1, the finite map 𝜎 is an isomorphism and the exact sequence (3.1) is

0⟶⨁𝒪𝑌 ⊠𝒪ℙ1(−1)⟶𝑀𝐿𝑌⊠𝒪ℙ1 (𝑑) ⟶𝑀𝐿𝑌 ⊠𝒪ℙ1(𝑑)⟶ 0.
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3.2. Case of product of projective spaces. In this subsection, we prove Theorem1.2.
Recall that

𝑋 = ℙ𝑛1 ×⋯ × ℙ𝑛𝑘 ,
𝐵 = 𝒪ℙ𝑛1 (𝑏1) ⊠⋯⊠𝒪ℙ𝑛𝑘 (𝑏𝑘),
𝐿 = 𝒪ℙ𝑛1 (𝑑1) ⊠⋯⊠𝒪ℙ𝑛𝑘 (𝑑𝑘),

and 𝑏 = min{𝑏1, . . . , 𝑏𝑘}, 𝑑 = min{𝑑1, . . . , 𝑑𝑘}. Fix 2 ≤ 𝑞 ≤ 𝑛1 +⋯+ 𝑛𝑘 + 1. Our aim
is to show that if 𝑑 + 𝑏 ≥ 0, then

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 0 for 0 ≤ 𝑝 ≤ (1/𝑛1!⋯𝑛𝑘! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2).
We put

𝑌 ≔ ℙ𝑛1 ×⋯ × ℙ𝑛𝑘−1 ,
𝐵𝑌 ≔ 𝒪ℙ𝑛1 (𝑏1) ⊠⋯⊠𝒪ℙ𝑛𝑘−1 (𝑏𝑘−1),
𝐿𝑌 ≔ 𝒪ℙ𝑛1 (𝑑1) ⊠⋯⊠𝒪ℙ𝑛𝑘−1 (𝑑𝑘−1),

and 𝑛 ≔ 𝑛𝑘. Then
𝑋 = 𝑌 × ℙ𝑛, 𝐵 = 𝐵𝑌 ⊠𝒪ℙ𝑛(𝑏𝑘), 𝐿 = 𝐿𝑌 ⊠𝒪ℙ𝑛(𝑑𝑘).

As𝑚𝑑 + 𝑏 ≥ 0 for any𝑚 > 0, we have
𝐻𝑖(𝑋, 𝐵 ⊗ 𝐿𝑚) = 0 for 𝑖 > 0 and𝑚 > 0.

By Proposition 2.1, for 𝑝 ≥ 0, we have
𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 𝐻𝑞−1(𝑌 × ℙ𝑛, ∧𝑝+𝑞−1𝑀𝐿𝑌⊠𝒪ℙ𝑛 (𝑑𝑘) ⊗ ((𝐿𝑌 + 𝐵𝑌 ) ⊠ 𝒪ℙ𝑛(𝑑𝑘 + 𝑏𝑘))).
We proceed by induction on 𝑛1 +⋯ + 𝑛𝑘. If 𝑛1 +⋯ + 𝑛𝑘 = 1, then 𝑞 = 2 and the

problem is to check the cohomology vanishing

𝐻1(ℙ1, ∧𝑝+1𝑀𝒪ℙ1 (𝑑) ⊗𝒪ℙ1(𝑑 + 𝑏)) = 0 for 0 ≤ 𝑝 ≤ 𝑑 + 𝑏.

As ∧𝑝+1𝑀𝒪ℙ1 (𝑑) ⊗ 𝒪ℙ1(𝑑 + 𝑏) = ⨁𝒪ℙ1(𝑑 + 𝑏 − 𝑝 − 1) and 𝑑 + 𝑏 − 𝑝 − 1 ≥ −1, the
desired cohomology vanishing immediately follows.
Assume that 𝑛1 + ⋯ + 𝑛𝑘 ≥ 2. Fix 0 ≤ 𝑝 ≤ (1/𝑛1!⋯𝑛𝑘! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2). By

Lemma 2.5, it is sufficient to show the cohomology vanishing on 𝑌 × ℙ𝑛−1 × ℙ1:
𝐻𝑞−1(∧𝑝+𝑞−1𝜎∗𝑀𝐿𝑌⊠𝒪ℙ𝑛 (𝑑𝑘)⊗((𝐿𝑌+𝐵𝑌 )⊠𝒪ℙ𝑛−1(𝑑𝑘+𝑏𝑘)⊠𝒪ℙ1(𝑑𝑘+𝑏𝑘+𝑛−1))) = 0,
where 𝜎∶ 𝑌 × ℙ𝑛−1 × ℙ1 → 𝑌 × ℙ𝑛 is the finite map given by (𝑦, 𝜉, 𝑧) ↦ (𝑦, 𝜉 + 𝑧). By
considering the short exact sequence (3.1) and applying Lemma 2.2 to

∧𝑝+𝑞−1𝜎∗𝑀𝐿𝑌⊠𝒪ℙ𝑛 (𝑑𝑘),
we can reduce the problem to proving the following:

𝐻𝑞−1(𝑌 ×ℙ𝑛−1×ℙ1, (∧𝑖𝑀𝐿𝑌⊠𝒪ℙ𝑛−1 (𝑑𝑘)⊗((𝐿𝑌 +𝐵𝑌 )⊠𝒪ℙ𝑛−1(𝑑𝑘+𝑏𝑘)))⊠𝒪ℙ1(𝑎𝑖)) = 0

for 0 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 1 (≤ (1/𝑛1!⋯𝑛𝑘! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2) + 𝑞 − 1), where
𝑎𝑖 ≔ 𝑖𝑑𝑘 − (𝑝+ 𝑞− 1− 𝑖)𝑛+ 𝑑𝑘 +𝑏𝑘 +𝑛− 1 = 𝑖(𝑑𝑘 +𝑛)+ 𝑑𝑘 +𝑏𝑘 +2𝑛− 𝑞𝑛− 1−𝑝𝑛.
By the Künneth formula, it is equivalent to showing that
(3.2)
𝐻𝑞−1(𝑌×ℙ𝑛−1, ∧𝑖𝑀𝐿𝑌⊠𝒪ℙ𝑛−1 (𝑑𝑘)⊗((𝐿𝑌+𝐵𝑌 )⊠𝒪ℙ𝑛−1(𝑑𝑘+𝑏𝑘)))⊗𝐻0(ℙ1, 𝒪ℙ1(𝑎𝑖)) = 0
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and
(3.3)
𝐻𝑞−2(𝑌×ℙ𝑛−1, ∧𝑖𝑀𝐿𝑌⊠𝒪ℙ𝑛−1 (𝑑𝑘)⊗((𝐿𝑌+𝐵𝑌 ))⊠𝒪ℙ𝑛−1(𝑑𝑘+𝑏𝑘))⊗𝐻1(ℙ1, 𝒪ℙ1(𝑎𝑖)) = 0
for 0 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 1.
By induction and Proposition 2.1, we can assume that

(3.4) 𝐻𝑞−1(𝑌 × ℙ𝑛−1, ∧𝑖𝑀𝐿𝑌⊠𝒪ℙ𝑛−1 (𝑑𝑘) ⊗ ((𝐿𝑌 + 𝐵𝑌 ) ⊠ 𝒪ℙ𝑛−1(𝑑𝑘 + 𝑏𝑘))) = 0
for 0 ≤ 𝑖 ≤ (1/𝑛1!⋯𝑛𝑘−1! (𝑛𝑘 − 1)! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2) + 𝑞 − 1 when 𝑞 ≥ 2, and
(3.5) 𝐻𝑞−2(𝑌 × ℙ𝑛−1, ∧𝑖𝑀𝐿𝑌⊠𝒪ℙ𝑛−1 (𝑑𝑘) ⊗ ((𝐿𝑌 + 𝐵𝑌 ) ⊠ 𝒪ℙ𝑛−1(𝑑𝑘 + 𝑏𝑘))) = 0
for 0 ≤ 𝑖 ≤ (1/𝑛1!⋯𝑛𝑘−1! (𝑛𝑘 − 1)! )(𝑑𝑞−2 + 𝑏𝑑𝑞−3) + 𝑞 − 2 when 𝑞 ≥ 3. Observe that
(3.2) immediately follows from (3.4). It only remains to check (3.3). If 𝑞 = 2, then

𝑎𝑖 = 𝑖(𝑑𝑘 + 𝑛) + 𝑑𝑘 + 𝑏𝑘 − 1 − 𝑛𝑝 ≥ 𝑑𝑘 + 𝑏𝑘 − 1 − 𝑛𝑝 ≥ 𝑑 + 𝑏 − 1 − 𝑛𝑝 ≥ −1
since 𝑝 ≤ (1/𝑛1!⋯𝑛𝑘! )(𝑑 + 𝑏) ≤ (1/𝑛)(𝑑 + 𝑏). Thus

𝐻1(ℙ1, 𝒪ℙ1(𝑎𝑖)) = 0,
so the cohomology vanishing (3.3) holds for 𝑞 = 2. Next, we consider the case that
𝑞 ≥ 3. If 0 ≤ 𝑖 ≤ (1/𝑛1!⋯𝑛𝑘−1! (𝑛𝑘−1)! )(𝑑𝑞−2+𝑏𝑑𝑞−3)+𝑞−2, then (3.3) immediately
follows from (3.5). If 𝑖 ≥ (1/𝑛1!⋯𝑛𝑘−1! (𝑛𝑘 − 1)! )(𝑑𝑞−2 + 𝑏𝑑𝑞−3) + 𝑞 − 1, then

𝑎𝑖 = 𝑖𝑑𝑘 + (𝑑𝑘 + 𝑏𝑘 + 2𝑛 + 𝑖𝑛 − 𝑞𝑛)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
≥0

−1 − 𝑛𝑝

≥ 𝑖𝑑 − 1 − 𝑛𝑝
≥ (1/𝑛1!⋯𝑛𝑘−1! (𝑛 − 1)! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2) − 1 − 𝑛𝑝
≥ −1

since 𝑝 ≤ (1/𝑛1!⋯𝑛𝑘−1! 𝑛! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2). Thus
𝐻1(ℙ1, 𝒪ℙ1(𝑎𝑖)) = 0,

so the cohomology vanishing (3.3) holds in this case as well. We have shown (3.2) and
(3.3), and they imply 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 0 as desired. We complete the proof of Theo-
rem 1.2.

3.3. General case. In this subsection, we prove Theorem 1.1. As wementioned in the
introduction, Raicu proved that Theorem 1.1 can be deduced from Theorem 1.2 for the
case 𝑘 = 3 (see [28, Corollary A.5]). Here we reproduce his proof for the completeness.
Recall that 𝑋 is an 𝑛-dimensional projective variety, 𝐵 is coherent sheaf, 𝐴 is an ample
divisor, 𝑃 is an arbitrary divisor on 𝑋 , and 𝐿𝑑 ≔ 𝒪𝑋(𝑑𝐴 + 𝑃) for an integer 𝑑 ≥ 1. Our
aim is to show that for each 2 ≤ 𝑞 ≤ 𝑛 + 1 (the case that 𝑞 = 1 is trivial), there is a
constant 𝐶 > 0 depending on 𝑋,𝐴, 𝐵, 𝑃 such that if 𝑑 is sufficiently large, then

𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) = 0 for 0 ≤ 𝑝 ≤ 𝐶𝑑𝑞−1.
We can choose integers 𝑎1, 𝑎2, 𝑎3 ≥ 1 with gcd(𝑎1, 𝑎2 + 𝑎3) = 1 such that

𝐴1 ≔ 𝑎1𝐴, 𝐴2 ≔ 𝑎2𝐴 + 𝑃, 𝐴3 ≔ 𝑎3𝐴 − 𝑃
are very ample and the natural maps
(3.6) 𝑆𝑚1𝐻0(𝑋, 𝐴1)⊗𝑆𝑚2𝐻0(𝑋, 𝐴2)⊗𝑆𝑚3𝐻0(𝑋, 𝐴3)⟶ 𝐻0(𝑋,𝑚1𝐴1+𝑚2𝐴2+𝑚3𝐴3)
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are surjective for all 𝑚1, 𝑚2, 𝑚3 > 0. We may assume that 𝑎1 ≫ 𝑎2 + 𝑎3. Note that
𝑎1, 𝑎2, 𝑎3 are depending only on 𝑋,𝐴, 𝑃. As 𝑑 is sufficiently large, we can find integers
𝑑1, 𝑑2 ≥ 1 such that 𝑑1 ≈ 𝑑/2𝑎1, 𝑑2 ≈ 𝑑/2(𝑎2 + 𝑎3) and 𝑑 + 𝑎3 = 𝑎1𝑑1 + (𝑎2 + 𝑎3)𝑑2.
Let 𝑑3 ≔ 𝑑2 − 1. Then 𝑑 = 𝑎1𝑑1 + 𝑎2𝑑2 + 𝑎3𝑑3, and 𝐿𝑑 = 𝒪𝑋(𝑑1𝐴1 + 𝑑2𝐴2 + 𝑑3𝐴3).
Note that 𝑑1 < 𝑑3 < 𝑑2.
Next, consider the commutative diagrams

𝑋 �
� //� _

��

ℙ𝐻0(𝑋, 𝐴1) × ℙ𝐻0(𝑋, 𝐴2) × ℙ𝐻0(𝑋, 𝐴3) ≕ ℙ𝑛1 × ℙ𝑛2 × ℙ𝑛3 = 𝑌� _

��
ℙ𝑟 ≔ ℙ𝐻0(𝑋, 𝐿𝑑)

� � // ℙ𝐻0(𝑌,𝒪ℙ𝑛1 (𝑑1) ⊠ 𝒪ℙ𝑛2 (𝑑2) ⊠ 𝒪ℙ𝑛3 (𝑑3)) ≕ ℙ𝑁 .

Clearly, 𝑛1, 𝑛2, 𝑛3 are depending only on 𝑋 , 𝐴, 𝑃. Notice that ℙ𝑟 is a linear subspace of
ℙ𝑁 by the surjectivity of (3.6). We can regard 𝐵 as a coherent sheaf on 𝑌, ℙ𝑟, and ℙ𝑁 .
The syzygies of 𝐵 on ℙ𝑁 are the syzygies of 𝐵 on ℙ𝑟 tensoring with a Koszul complex
of linear forms. By letting

𝐿𝑌 ≔ 𝒪ℙ𝑛1 (𝑑1) ⊠ 𝒪ℙ𝑛2 (𝑑2) ⊠ 𝒪ℙ𝑛3 (𝑑3),
we see that

(3.7) min{𝑝 ∣ 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) ≠ 0} = min{𝑝 ∣ 𝐾𝑝,𝑞(𝑌, 𝐵; 𝐿𝑌 ) ≠ 0}.
Let 𝑆 ≔ 𝑆(𝐻0(𝑋, 𝐴1) ⊕ 𝐻0(𝑋, 𝐴2) ⊕ 𝐻0(𝑋, 𝐴3)) be the total coordinate ring of 𝑌 =

ℙ𝑛1 × ℙ𝑛2 × ℙ𝑛3 with the usual ℤ3-grading. Then
𝑀 ≔ ⨁

(𝑎1,𝑎2,𝑎3)∈ℤ3≥0

𝐻0(𝑌, 𝐵 ⊗ 𝒪ℙ𝑛1 (𝑎1) ⊠ 𝒪ℙ𝑛2 (𝑎2) ⊠ 𝒪ℙ𝑛3 (𝑎3))

is a finitely generated graded 𝑆-module. Consider the minimal free resolution of𝑀:

0⟵𝑀 ⟵𝐸0 ⟵𝐸1 ⟵⋯⟵𝐸𝑚 ⟵0
where

𝐸𝑖 = ⨁
𝑏𝑗=(𝑏𝑗1,𝑏

𝑗
2,𝑏

𝑗
3)∈𝑆𝑖

𝐹𝑖,𝑏𝑗 ⊗ 𝑆(𝑏𝑗)

for some finite dimensional vector space 𝐹𝑖,𝑏𝑗 over 𝕜 and finite subsets 𝑆 𝑖 ⊆ ℤ3. Let

𝐵𝑗𝑌 ≔ 𝒪ℙ𝑛1 (𝑏𝑗1) ⊠ 𝒪ℙ𝑛2 (𝑏𝑗2) ⊠ 𝒪ℙ𝑛3 (𝑏𝑗3)
and

𝑏 ≔ min{𝑏𝑗1, 𝑏
𝑗
2, 𝑏

𝑗
3 ∣ 𝑏𝑗 ∈ 𝑆 𝑖, 0 ≤ 𝑖 ≤ 𝑚}.

Note that 𝑏 is depending only on 𝑋 , 𝐴, 𝐵, 𝑃. Now, fix 2 ≤ 𝑞 ≤ 𝑛+1 (≤ 𝑛1+𝑛2+𝑛3+1).
By Theorem 1.2, for 0 ≤ 𝑖 ≤ 𝑚 and 𝑏𝑗 ∈ 𝑆 𝑖, we have

(3.8) 𝐾𝑝−𝑖,𝑞+𝑖(𝑌, 𝐵𝑗𝑌 ; 𝐿𝑌 ) = 0 for 0 ≤ 𝑝 ≤ (1/𝑛1! 𝑛2! 𝑛3! )(𝑑𝑞+𝑖−11 + 𝑏𝑑𝑞+𝑖−21 ) + 𝑖.
Then (3.7) and [28, Theorem A.1] (cf. [21, Proposition 1.d.3]) show that

(3.9) 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) = 𝐾𝑝,𝑞(𝑌, 𝐵; 𝐿𝑌 ) = 0 for 0 ≤ 𝑝 ≤ (1/𝑛1! 𝑛2! 𝑛3! )(𝑑𝑞−11 + 𝑏𝑑𝑞−21 ).
Recall that the numbers 𝑎1, 𝑎2, 𝑎3, 𝑛1, 𝑛2, 𝑛3, 𝑏 are depending only on 𝑋 , 𝐴, 𝐵, 𝑃 but
not on 𝑑. Since 𝑑1 ≈ 𝑑/2𝑎1 grows linearly in 𝑑 and 𝑑 is sufficiently large, Theorem 1.1
follows.
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Remark 3.1. Instead of applying [28, Theorem A.1], one can alternatively prove (3.9)
as follows. From the minimal free resolution of𝑀, we have an exact sequence on 𝑌 :

0⟵ 𝐵 ⟵ ℰ0 ⟵ℰ1 ⟵⋯⟵ℰ𝑚 ⟵0
where

ℰ𝑖 = ⨁
𝑏𝑗∈𝑆𝑖

𝐹𝑖,𝑏𝑗 ⊗ 𝐵𝑗𝑌 .

By using Proposition 2.1 and chasing through the above exact sequence, we see that

𝐾𝑝,𝑞(𝑌, 𝐵; 𝐿𝑌 ) = 𝐻𝑞−1(𝑌, ∧𝑝+𝑞−1𝑀𝐿𝑌 ⊗ 𝐵 ⊗ 𝐿𝑌 ) = 0
is implied by

𝐾𝑝−𝑖,𝑞+𝑖(𝑌, 𝐵𝑗𝑌 ; 𝐿𝑌 ) = 𝐻𝑞+𝑖−1(𝑌, ∧(𝑝−𝑖)+(𝑞+𝑖)−1𝑀𝐿𝑌 ⊗ 𝐵𝑗𝑌 ⊗ 𝐿𝑌 ) = 0

for all 0 ≤ 𝑖 ≤ 𝑚 and 𝑏𝑗 ∈ 𝑆 𝑖. Thus (3.7) and (3.8) imply (3.9).

4. Open problems

In this section, we discuss some open problems and conjectures. Let 𝑋 be a smooth
projective variety of dimension 𝑛, and 𝐵 be a coherent sheaf on 𝑋 . Fix an ample divisor
𝐴 and an arbitrary divisor 𝑃 on 𝑋 , and put 𝐿𝑑 ≔ 𝒪𝑋(𝑑𝐴 + 𝑃) for an integer 𝑑 ≥ 1.
For each 2 ≤ 𝑞 ≤ 𝑛+1, it would be extremely interesting to find an explicit constant

𝑐 > 0 in terms of 𝑋 , 𝐴, 𝐵, 𝑃, and 𝑞, 𝑑 such that if 𝑑 is sufficiently large, then
𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) = 0 for 0 ≤ 𝑝 ≤ 𝑐 and 𝐾𝑐+1,𝑞(𝑋, 𝐵; 𝐿𝑑) ≠ 0.

However, this problem is already very difficult for 𝑞 = 2. A generalization of Mukai’s
conjecture (cf. [11, Conjecture 4.2]) asks whether the property 𝑁𝑑 holds for 𝐾𝑋 + (𝑛+
2+𝑑)𝐴when𝑋 is a smooth projective complex variety. But it is widely open evenwhen
𝑛 = 2 and 𝑑 = 0. Moreover, Fujita’s conjecture, which predicts that 𝐾𝑋 + (𝑛 + 2 + 𝑑)𝐴
is very ample for 𝑑 ≥ 0, is unknown when 𝑛 ≥ 3. However, when 𝐴 is very ample,
Ein–Lazarsfeld established in [11, Theorem 1] that

𝐾𝑝,𝑞(𝑋, 𝐾𝑋 + (𝑛 + 1 + 𝑑)𝐴) = 0 for 0 ≤ 𝑝 ≤ 𝑑 and 𝑞 ≥ 2.
It is reasonable to expect extending this result for 𝑞 ≥ 3.

Problem 4.1. Let𝑋 be a smooth projective complex variety of dimension 𝑛, and𝐴 be a
very ample divisor on 𝑋 . For each 2 ≤ 𝑞 ≤ 𝑛+1 and 𝑑 ≥ 0, find an explicit polynomial
𝑃(𝑥) of degree 𝑞 − 1 such that

𝐾𝑝,𝑞(𝑋, 𝐾𝑋 + (𝑛 + 1 + 𝑑)𝐴) = 0 for 0 ≤ 𝑝 ≤ 𝑃(𝑑)

One can also consider the effective asymptotic vanishing problem for the syzygies
of products of projective spaces.

Problem 4.2. Let 𝑘 ≥ 1 be an integer, 𝑛1, . . . , 𝑛𝑘, 𝑑1, . . . , 𝑑𝑘 be positive integers, and
𝑏1, . . . , 𝑏𝑘 be integers. Set

𝑋 ≔ ℙ𝑛1 ×⋯ × ℙ𝑛𝑘 ,
𝐵 ≔ 𝒪ℙ𝑛1 (𝑏1) ⊠⋯⊠𝒪ℙ𝑛𝑘 (𝑏𝑘),
𝐿 ≔ 𝒪ℙ𝑛1 (𝑑1) ⊠⋯⊠𝒪ℙ𝑛𝑘 (𝑑𝑘),
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For each 2 ≤ 𝑞 ≤ 𝑛1 +⋯+ 𝑛𝑘 + 1, find a constant 𝑐 > 0 in terms of 𝑏1, . . . , 𝑏𝑘, 𝑑1, . . . ,
𝑑𝑘, and 𝑞 such that if 𝑑1, . . . , 𝑑𝑘 are sufficiently large, then
(4.1) 𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 0 for 0 ≤ 𝑝 ≤ 𝑐 and 𝐾𝑐+1,𝑞(𝑋, 𝐵; 𝐿) ≠ 0.

In Theorem 1.2, we prove that if 𝑑 + 𝑏 ≥ 0, then
𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿) = 0 for 0 ≤ 𝑝 ≤ (1/𝑛1!⋯𝑛𝑘! )(𝑑𝑞−1 + 𝑏𝑑𝑞−2),

where 𝑏 ≔ min{𝑏1, . . . , 𝑏𝑘}, 𝑑 ≔ min{𝑑1, . . . , 𝑑𝑘}. By a small modification of the proof,
we can improve the bound on 𝑝, but ourmethod only gives a bound on 𝑝 depending on
dimensions 𝑛1, . . . , 𝑛𝑘. It is expected that the constant 𝑐 in Problem 4.2 is independent
of 𝑛1, . . . , 𝑛𝑘. It would be also interesting to find a constant 𝑑 > 0 in terms of 𝑏1, . . . ,
𝑏𝑘, 𝑛1, . . . , 𝑛𝑘, and 𝑞 such that if 𝑑1, . . . , 𝑑𝑘 ≥ 𝑑, then (4.1) holds. When 𝑘 = 1, there is
a precise prediction on 𝑐 and 𝑑 (see [12, Conjecture 7.5], [14, Conjecture 2.3]).

Conjecture 4.3 (Ein–Lazarsfeld). Fix 𝑛 ≥ 1, 𝑏 ≥ 0, and 0 ≤ 𝑞 ≤ 𝑛. If 𝑑 ≥ 𝑏 + 𝑞 + 1,
then

𝐾𝑝,𝑞(ℙ𝑛, 𝒪ℙ𝑛(𝑏); 𝒪ℙ𝑛(𝑑)) = 0 for 0 ≤ 𝑝 ≤ (𝑑 + 𝑞
𝑞 ) − (𝑑 − 𝑏 − 1

𝑞 ) − 𝑞 − 1.

Notice that the conjecture gives the precise vanishing range because Ein–Erman–
Lazarsfeld [10, Theorem 2.1] (see also [14, Theorem 2.1]) proved that

𝐾𝑝,𝑞(ℙ𝑛, 𝒪ℙ𝑛(𝑏); 𝒪ℙ𝑛(𝑑)) ≠ 0
for all

(𝑑 + 𝑞
𝑞 ) − (𝑑 − 𝑏 − 1

𝑞 ) − 𝑞 ≤ 𝑝 ≤ (𝑑 + 𝑛
𝑛 ) + (𝑑 + 𝑛 − 𝑞

𝑛 − 𝑞 ) − (𝑛 + 𝑏
𝑞 + 𝑏) − 𝑞 − 1,

In [26], Ottaviani–Paoletti conjectured that if 𝑛 ≥ 3, 𝑑 ≥ 3, then 𝒪ℙ𝑛(𝑑) satisfies
the property 𝑁3𝑑−3. They also consider the cases that 𝑛 ≤ 2 or 𝑑 ≤ 2, but these cases
are already settled. By [26, Theorem 1.6], the property 𝑁3𝑑−3 for 𝒪ℙ𝑛(𝑑) is implied by
that 𝐾𝑝,2(ℙ𝑛, 𝒪ℙ𝑛(𝑑)) = 0 for 0 ≤ 𝑝 ≤ 3𝑑 − 3. Thus Conjecture 4.3 for 𝑏 = 0 and 𝑞 = 2
is equivalent to Ottaviani–Paoletti’s conjecture. At this moment, we only know that
𝒪ℙ𝑛(𝑑) satisfies the property 𝑁𝑑+1 by Bruns–Conca–Römer [7], and a small change of
the proof of Theorem 1.2 yields that 𝒪ℙ3(𝑑) satisfies the property 𝑁𝑑+2. A new idea
might be needed to solve Conjecture 4.3.
It is also a fascinating problem to study the asymptotic behavior of the Betti numbers

𝑘𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑) ≔ dim𝐾𝑝,𝑞(𝑋, 𝐵; 𝐿𝑑)
when 𝑑 is sufficiently large (see [12, Problem 7.3]). In this direction, Ein–Erman–
Lazarsfeld conjectured that for each 1 ≤ 𝑞 ≤ 𝑛, the Betti numbers 𝑘𝑝,𝑞(𝑋, 𝐿𝑑) converge
to a normal distribution (see [9, Conjecture B], [14, Conjecture 3.2]). This normal dis-
tribution conjecture has not been verified even for ℙ2 and ℙ1 × ℙ1, and it seems that
the conjecture is already very challenging for Veronese embeddings (cf. [5, 6]).

Conjecture 4.4 (Ein–Erman–Lazarsfeld). Fix 𝑛 ≥ 1 and 1 ≤ 𝑞 ≤ 𝑛. Then there is a
normalizing function 𝐹𝑞(𝑑) such that

𝐹𝑞(𝑑) ⋅ 𝑘𝑝𝑑 ,𝑞(ℙ𝑛, 𝒪ℙ𝑛(𝑑))⟶ 𝑒−𝑎2/2

as 𝑑 → ∞ and 𝑝𝑑 → 𝑟𝑑/2 + 𝑎√𝑟𝑑/2.
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Notice that

𝑘𝑝,𝑞(ℙ𝑛, 𝒪ℙ𝑛(𝑑)) =
1
𝑛 ⋅ ℎ

𝑞(ℙ𝑛−1 × ℙ1, ∧𝑝+𝑞𝜎∗𝑀𝒪ℙ𝑛 (𝑑) ⊗ (𝒪ℙ𝑛−1 ⊠𝒪ℙ1(𝑛 − 1)))

for 𝑝 ≥ 0 and 1 ≤ 𝑞 ≤ 𝑛. It is tempting to wonder if there is a clever way to compute
this Betti number.
We refer to [6] and [12, 14] for more problems and conjectures on syzygies of

Veronese embeddings and asymptotic syzygies of algebraic varieties, respectively.
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