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EIGENVALUE PROBLEMS IN L∞: OPTIMALITY CONDITIONS, DUALITY,
AND RELATIONS WITH OPTIMAL TRANSPORT

LEON BUNGERT AND YURY KOROLEV

Abstract. In this article we characterize the L∞ eigenvalue problem associated to the
Rayleigh quotient ‖∇𝑢‖L∞/‖𝑢‖∞ and relate it to a divergence-form PDE, similarly to
what is known for L𝑝 eigenvalue problems and the 𝑝-Laplacian for 𝑝 < ∞. Contrary
to existing methods, which study L∞-problems as limits of L𝑝-problems for 𝑝 → ∞, we
develop a novel framework for analyzing the limiting problem directly using convex
analysis and geometric measure theory. For this, we derive a novel fine characteriza-
tion of the subdifferential of the Lipschitz-constant-functional 𝑢 ↦ ‖∇𝑢‖L∞ . We show
that the eigenvalue problem takes the form 𝜆𝜈𝑢 = −div(𝜏∇𝜏𝑢), where 𝜈 and 𝜏 are non-
negative measures concentrated where |𝑢| respectively |∇𝑢| are maximal, and ∇𝜏𝑢 is
the tangential gradient of 𝑢 with respect to 𝜏. Lastly, we investigate a dual Rayleigh
quotient whose minimizers solve an optimal transport problem associated to a gen-
eralized Kantorovich–Rubinstein norm. Our results apply to all stationary points of
the Rayleigh quotient, including infinity ground states, infinity harmonic potentials,
distance functions, etc., and generalize known results in the literature.
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1. Introduction

1.1. Motivation and main contributions. Nonlinear eigenvalue problems for the
𝑝-Laplacian for 𝑝 < ∞ have been the subject of extensive research for the last three
decades—see [22,30–34,36,39] for a nonexhaustive list—and have applications in data
science [8, 23]. They can be characterized as solutions of a nonlinear divergence-form
PDE or as unique minimizers of a Rayleigh quotient involving the 𝑝-Dirichlet energy
(we refer to this as the L𝑝 eigenvalue problem). For 𝑝 = ∞minimizers of the Rayleigh
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quotient, now involving the Lipschitz constant, are no longer unique. We refer to this
problem as the L∞ eigenvalue problem. A certain class of minimizers, called infinity
ground states, can be recovered as limits of 𝑝-Laplacian eigenfunctions as 𝑝 → ∞.
General minimizers, however, do not admit such a variational principle.
In this paper we develop a novel analytical framework for studying the L∞ eigen-

value problem which does not require taking the limit 𝑝 → ∞ and instead uses tech-
niques from convex analysis and geometric measure theory. This allows us to gener-
alize various known results about special classes of minimizers and extend them to
general minimizers.
Let us fix some notation. Let Ω ⊂ ℝ𝑛 be a bounded domain. For 𝑝 ∈ [1,∞],

we denote the L𝑝-spaces with respect to a measure 𝜇 as L𝑝𝜇(Ω) and we write simply
L𝑝(Ω) when 𝜇 is the Lebesgue measure. These spaces are equipped with standard L𝑝-
norms ‖𝑢‖L𝑝𝜇 or ‖𝑢‖L𝑝 , where we omit the dependency on Ω for the sake of a com-
pact notation. For 𝑝 ∈ [1,∞), the Sobolev space W1,𝑝

0 (Ω) is defined as the closure
of the space of smooth and compactly supported functions with respect to the norm
‖𝑢‖W1,𝑝 ≔ ‖𝑢‖L𝑝 + ‖∇𝑢‖L𝑝 .
The eigenvalue problem of the 𝑝-Laplacian (see [39] for a detailed study) consists in

finding a function 𝑢 ∈ W1,𝑝
0 (Ω) which is a weak solution of

(1.1) 𝜆𝑝𝑝 |𝑢|𝑝−2 𝑢 = −div(|∇𝑢|𝑝−2∇𝑢).
The eigenvalue 𝜆𝑝 > 0 is given by the minimal value of a nonlinear Rayleigh quotient

(1.2) 𝜆𝑝 ≔ inf
ᵆ∈W1,𝑝

0 (Ω)

‖∇𝑢‖L𝑝
‖𝑢‖L𝑝

.

Solutions of the 𝑝-Laplacian eigenvalue problem (1.1) for 𝑝 > 1 are known to be
unique up to normalization and are in one-to-one correspondence with minimizers
of the Rayleigh quotient in (1.2).
In this paper we study the following limiting minimization problem of an L∞

Rayleigh quotient over Lip0(Ω), the space of Lipschitz functions on Ω which are zero
on the boundary:

(1.3) 𝜆∞ ≔ inf
ᵆ∈Lip0(Ω)

‖∇𝑢‖L∞
‖𝑢‖L∞

.

We denote by 𝑟Ω > 0 the inradius of Ω, defined as maximal value of the distance
function:

𝑑Ω(𝑥) ≔ dist(𝑥, 𝜕Ω) ≔ min
𝑦∈𝜕Ω

|𝑥 − 𝑦| ,(1.4)

𝑟Ω ≔ max
𝑥∈Ω

𝑑Ω(𝑥).(1.5)

It is very easy to show [28] that the infimal value in (1.3) is given by

(1.6) 𝜆∞ = lim
𝑝→∞

𝜆𝑝 =
1
𝑟Ω

,

which implies that the distance function is always a minimizer of the Rayleigh quo-
tient.
It has been shown in [15, 20, 29] that certain classes of minimizers of (1.3) satisfy a

divergence-form PDEwhich is structurally similar to (1.1). Furthermore, a connection
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between infinity ground states and solutions of a certain optimal transport problemwas
established in [15].
In this paper we ask the following questions:
(1) Do all solutions of the nonlinear eigenvalue problem associated to the Rayleigh

quotient ‖∇𝑢‖L∞/‖𝑢‖∞ satisfy a PDE which is structurally similar to the 𝑝-
Laplacian eigenvalue problem 𝜆 |𝑢|𝑝−2 𝑢 = −div(|∇𝑢|𝑝−2∇𝑢)?

(2) Can all minimizers of the Rayleigh quotient ‖∇𝑢‖L∞/‖𝑢‖∞ be related to solu-
tions of an optimal transport problem?

The short answer is yes, see the PDE (1.7) and the optimal transport problem (1.8). To
answer these questionsweworkwith general stationary points instead ofminimizers of
the Rayleigh quotient ‖∇𝑢‖L∞/‖𝑢‖∞ for which we derive a nonlinear eigenvalue prob-
lem in the form of a divergence PDE. Then we shall study minimizers of the Rayleigh
quotientwhichwewill relate to the distance function and solutions of an optimal trans-
port problem.
The techniques we use to study the L∞ eigenvalue problem are also novel: instead of

approximating the L∞-problem with L𝑝-problems and sending 𝑝 to infinity, we mainly
rely on elegant and well-established methods of convex analysis. On the one hand,
this establishes a new analytical framework to tackle L∞-type problems without using
viscosity solutions or similar technical concepts fromPDE analysis. On the other hand,
this makes our results more general since the class of minimizers to the L∞-problem
considered is strictly larger than the class of minimizers which can be approximated
with L𝑝-problems.
Ourmain contributions are the following:

• We develop a novel analytical framework solely based on convex analysis and
geometric measure theory which allows us to prove known and novel results
for L∞-problems without the need to take the technical limit 𝑝 → ∞.

• We derive a nonlinear eigenvalue problem, involving duality maps and subdif-
ferentials, which describes stationary points of the Rayleigh quotient
‖∇𝑢‖L∞/‖𝑢‖∞.

• We characterize solutions to the eigenvalue problem as solutions to a fully non-
linear PDE in divergence form,

(1.7) 𝜆𝜈𝑢 = −div(𝜏∇𝜏𝑢),

involving non-negative measures 𝜈 and 𝜏 which are concentrated where |𝑢|
respectively |∇𝑢| are maximal, and the notion of a tangential gradient ∇𝜏𝑢 de-
veloped in [5], see also [15, 26, 40]. This is our main result Theorem 2.1.

• We show geometric relations between general minimizers of the Rayleigh quo-
tient, the distance functions to the boundary, and the distance function to a
generalized inball.

• We derive a dual Rayleigh quotient defined on the space of measures onΩ and
relate it to an optimal transport problem involving a variant of theKantorovich–
Rubinstein norm. In particular, Proposition 4.6 shows that the measure 𝜇 ≔
𝜈 ‖𝑢‖∞ solves

(1.8) max
�̃�∈𝒫(Ω)

inf
𝜌∈𝒫(𝜕Ω)

𝑊 1(�̃�, 𝜌),
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where 𝒫(Ω) and 𝒫(𝜕Ω) are the spaces of probability measures on Ω and its
boundary 𝜕Ω, respectively, and𝑊 1(⋅, ⋅) is the geodesic 1-Wasserstein distance.

The rest of the paper is organized as follows: Section 1.2 discusses special classes
of minimizers of the L∞ Rayleigh quotient, namely infinity ground states and infin-
ity harmonic potentials. In Section 1.3 we introduce essential concepts from convex
analysis and derive general relations of nonlinear eigenvalue problems and Rayleigh
quotients on Banach spaces. In particular, we show equivalence between minimizers
of the Rayleigh quotient and those of a dual Rayleigh quotient, which is a new result in
its own right. In Section 1.4we define suitable spaces of continuous functions andmea-
sures and their duality relations. Section 2 constitutes the core of our article where we
first state our main result and some corollaries, characterizing the L∞ eigenvalue prob-
lem andminimizers of the Rayleigh quotient, and then characterize subdifferentials to
prove the result. In Section 3 we provide some geometric relations between minimiz-
ers of the Rayleigh quotient and the distance function. Section 4, where we investigate
a dual Rayleigh quotient and provide an optimal transport characterization of the sub-
gradients of minimizers using Kantorovich–Rubinstein theory, is self-contained and
does not utilize the subdifferential characterizations from Section 2. Section 5 con-
cludes the paper with a summary of our results and some open questions.

1.2. Special solutions of the eigenvalue problem. Besides the distance function
(1.4), which is always a minimizer of the Rayleigh quotient in (1.3), there are two other
important classes of minimizers: infinity ground states and infinity harmonic poten-
tials. Unless for very specific domains [46], these three different classes of minimizers
are different.
In [28] it was shown that in the limit 𝑝 → ∞ normalized eigenfunctions 𝑢𝑝 ∈

W1,𝑝
0 (Ω) of the 𝑝-Laplacian, i.e., solutions of (1.1) with ‖‖𝑢𝑝

‖
‖L𝑝 = 1, converge (up to

a subsequence) uniformly to a continuous function 𝑢∞, termed infinity ground state.
Furthermore, 𝑢∞ is a viscosity solution of the following PDE, which is structurally
completely different from (1.1):

(1.9) min(|∇𝑢| − 𝜆∞𝑢,−Δ∞𝑢) = 0.

Here 𝜆∞ is given by the reciprocal inradius as in (1.6), andΔ∞𝑢 ≔ ⟨∇𝑢,𝐷2𝑢∇𝑢⟩ denotes
the infinity Laplacian operator, see the seminal work [1] for a detailed study and [27]
for intriguing properties.
While every solution to (1.9) is a minimizer of the Rayleigh quotient in (1.3), the

converse is not true and there are typically many minimizers which do not solve (1.9).
Furthermore, this PDE can have solutions which do not arise as limits of solutions
of (1.1) for 𝑝 → ∞ and are hence called nonvariational ground states, see [25] for
an example. Only for a very specific class of domains Ω, namely stadium-like sets as
classified in [46], these ambiguities do not occur and the distance function is the unique
minimizer of the Rayleigh quotient and viscosity solution of the PDE.
Apart from the distance function and infinity ground states, another class of min-

imizers of the Rayleigh quotient is infinity harmonic potentials, defined as solutions
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to

⎧
⎨
⎩

Δ∞𝑢 = 0, in Ω ⧵ ℛΩ,
𝑢 = 𝑟Ω, on ℛΩ,
𝑢 = 0, on 𝜕Ω.

(1.10)

The set ℛΩ ⊂ Ω is the so-called high ridge of Ω, defined as the set of all points with
maximal distance to the boundary:

(1.11) ℛΩ ≔ argmax𝑥∈Ω 𝑑Ω(𝑥).
Also infinity harmonic potentials are in general no infinity ground states; a counterex-
ample on a convex domain can be found in [37]. For interesting properties of these
potentials and their streamlines we refer to [38].

1.3. Nonlinear eigenvalue problems on Banach spaces. Before we specialize the
discussion toL∞ eigenvalue problems, this section contains a short primer onnonlinear
eigenvalue problems in Banach spaces. We introduce some important concepts from
convex analysis, e.g., subdifferentials and duality maps, introduce nonlinear eigen-
value problems, and discuss their dual versions. The presentation follows the lines
of [9, 11].
We let 𝒳 be a Banach space over ℝ with topological dual space 𝒳∗. The duality

product is denoted by ⟨⋅, ⋅⟩ and the norm on 𝒳∗ is given by

(1.12) ‖𝜇‖𝒳∗ ≔ sup
‖ᵆ‖𝒳=1

⟨𝜇, 𝑢⟩.

Definition 1.1 (Subdifferential). Given a convex functional 𝐽 ∶ 𝒳 → (−∞,+∞], the
subdifferential of 𝐽 is defined as
(1.13) 𝜕𝐽(𝑢) = {𝜇 ∈ 𝒳∗ ∶ 𝐽(𝑢) + ⟨𝜇, 𝑣 − 𝑢⟩ ≤ 𝐽(𝑣), ∀𝑣 ∈ 𝒳}, 𝑢 ∈ 𝒳.

The subdifferential is a generalization of the Frechet derivative for nondifferentiable
convex functionals. Geometrically, 𝜕𝐽(𝑢) contains all slopes such that the linerariza-
tion of 𝐽 in 𝑢 with this slope lies below the graph of 𝐽. By definition, 𝜕𝐽(𝑢) is a subset
of the dual space 𝒳∗.
In the context of nonlinear eigenvalue problems, absolutely homogeneous function-

als have particular importance since they can be used to formulate a plethora of eigen-
value problems, e.g., associated to linear operators, or nonlinear differential operators
like the 𝑝-Laplacian or the porous medium operator (see, e.g., [10, 12, 24]).

Definition 1.2 (Absolutely one-homogeneous functionals). A functional 𝐽 ∶ 𝒳 →
(−∞,+∞] is called absolutely one-homogeneous if
(1.14) 𝐽(𝑐𝑢) = |𝑐|𝐽(𝑢), ∀𝑐 ∈ ℝ, 𝑢 ∈ dom(𝐽).

Since absolutely one-homogeneous functionals are seminorms on subspaces of 𝒳,
their subdifferential can be characterized as [2, 14]

(1.15) 𝜕𝐽(𝑢) = {𝜇 ∈ 𝒳∗ ∶ ⟨𝜇, 𝑣⟩ ≤ 𝐽(𝑣), ∀𝑣 ∈ 𝒳, ⟨𝜇, 𝑢⟩ = 𝐽(𝑢)}.
For the specific choice 𝐽(⋅) = ‖⋅‖𝒳 , the subdifferential is better known as duality map,
defined as follows:
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Definition 1.3 (Duality map). The duality map Φ𝒳 of 𝒳 is given by

(1.16) Φ𝒳(𝑢) = {𝜇 ∈ 𝒳∗ ∶ ‖𝜇‖𝒳∗ ≤ 1, ⟨𝜇, 𝑢⟩ = ‖𝑢‖𝒳}, 𝑢 ∈ 𝒳.

By the Hahn–Banach theorem Φ𝒳(𝑢) is nonempty for any 𝑢 ∈ 𝒳.

We assume without loss of generality that

(1.17) 𝒩(𝐽) = {𝑢 ∈ 𝒳 ∶ 𝐽(𝑢) = 0} = {0},

which can always be achieved by replacing𝒳with the quotient space𝒳/𝒩(𝐽), see [10].
Then we can define a nonlinear Rayleigh quotient

(1.18) 𝑅(𝑢) = 𝐽(𝑢)
‖𝑢‖𝒳

, 𝑢 ∈ 𝒳 ⧵ {0}

and the minimal value of the Rayleigh quotient is defined as

(1.19) 𝜆min ≔ inf
ᵆ∈𝒳⧵{0}

𝑅(𝑢).

Positivity of 𝜆min is equivalent to 𝐽 being coercive, meaning that there exists 𝐶 > 0
such that

(1.20) 𝐶 ‖𝑢‖𝒳 ≤ 𝐽(𝑢), ∀𝑢 ∈ 𝒳.

In this case, obviously 𝐶 = 𝜆min is the optimal constant in (1.20).
Indeed, theminimal value 𝜆min of the Rayleigh quotient can be interpreted as small-

est eigenvalue. To see this we define a doubly nonlinear eigenvalue problem as follows:

Definition 1.4 (Nonlinear eigenvalue problem). We call 𝑢 ∈ 𝒳 an eigenvector with
eigenvalue 𝜆 ∈ ℝ if

(1.21) 𝜆Φ𝒳(𝑢) ∩ 𝜕𝐽(𝑢) ≠ ∅.

Proposition 1.5—the proof of which is standard and can be found in [2] or [11] in
large generality—states that minimizers of 𝑅 coincide with eigenfunctions with eigen-
value 𝜆min.

Proposition 1.5. It holds that 𝑢 ∈ 𝒳 minimizes 𝑅(𝑢) = 𝐽(𝑢)/ ‖𝑢‖𝒳 if and only if it
satisfies (1.21) with 𝜆 ≔ 𝜆min. Such 𝑢 ∈ 𝒳 are called ground states.

Example 1.6 (𝑝-Laplacian eigenvalue problem). Letting𝒳=L𝑝(Ω) and 𝐽(𝑢) = ‖∇𝑢‖L𝑝
if 𝑢 ∈ W1,𝑝

0 (Ω) the eigenvalue problem (1.21) is equivalent to the 𝑝-Laplacian eigen-
value problem

𝜆 |𝑢|𝑝−2 𝑢 = −Δ𝑝𝑢.

We conclude this section with a study of the dual eigenvalue problem to (1.21). For
this, we define thedual functional of 𝐽—not to be confusedwith the convex conjugate—
as follows:

Definition 1.7 (Dual functional). Let 𝐽 ∶ 𝒳 → (−∞,+∞] be absolutely one-
homogeneous. Then the dual functional 𝐽∗ ∶ 𝒳∗ → (−∞,+∞] is defined as

(1.22) 𝐽∗(𝜇) = sup
𝐽(ᵆ)=1

⟨𝜇, 𝑢⟩, 𝜇 ∈ 𝒳∗.
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Since 𝐽 is a seminormwhen being absolutely one-homogeneous, the dual functional
is nothing but the dual seminorm, see [12]. In particular, it is also absolutely one-
homogeneous and we can define the dual Rayleigh quotient

(1.23) 𝑅∗(𝜇) =
‖𝜇‖𝒳∗

𝐽∗(𝜇)
, 𝜇 ∈ 𝒳∗ ⧵ {0},

with associated dual eigenvalue problem

(1.24) 𝜆𝜕𝐽∗(𝜇) ∩ Φ𝒳∗(𝜇) ≠ ∅.

The relation to the primal Rayleigh quotient 𝑅(𝑢) and the eigenvalue problem (1.21)
becomes clear in Proposition 1.8, which states that a solution of the primal problem
gives rise to a dual solution.

Proposition 1.8. It holds that

(1.25) inf
ᵆ∈𝒳

𝑅(𝑢) ≤ inf
𝜇∈𝒳∗

𝑅∗(𝜇),

with equality if the left problem admits a minimizer. If furthermore 𝑢 ∈ 𝒳 solves (1.21)
with 𝜆 = 𝜆min, then any 𝜇 ∈ Φ𝒳(𝑢) with 𝜆min𝜇 ∈ 𝜕𝐽(𝑢) solves (1.24) with 𝜆 = 𝜆min.

Proof. Letting 𝜆min = infᵆ 𝑅(𝑢) it holds 𝜆min ‖𝑢‖ ≤ 𝐽(𝑢) for all 𝑢 ∈ 𝒳. This implies

𝐽∗(𝜇) = sup
ᵆ∈𝒳

⟨𝜇, 𝑢⟩
𝐽(𝑢) ≤ 1

𝜆min
sup
ᵆ∈𝒳

⟨𝜇, 𝑢⟩
‖𝑢‖𝒳

= 1
𝜆min

‖𝜇‖𝒳∗

and hence 𝜆min ≤ inf𝜇∈𝒳∗ 𝑅∗(𝜇).
On the other hand, letting 𝑢 ≠ 0 such that 𝑅(𝑢) = 𝜆min and 𝜇 ∈ 𝒳∗ such that

𝜇 ∈ Φ𝒳(𝑢) and 𝜆min𝜇 ∈ 𝜕𝐽(𝑢) we obtain ‖𝜇‖𝒳∗ = 1 and hence

inf
𝜇∈𝒳∗

𝑅∗(𝜇) ≤
1

𝐽∗(𝜇)
= 1
supᵆ∈𝒳

⟨𝜇,ᵆ⟩
𝐽(ᵆ)

≤ 𝜆min
⟨𝜆min𝜇,ᵆ⟩

𝐽(ᵆ)

= 𝜆min.

Hence, we have shown inf𝜇 𝑅∗(𝜇) = 𝜆min and that 𝜇 is a minimizer of 𝑅∗. Showing
that this implies (1.24) with 𝜆 = 𝜆min works just as in the proof of Proposition 1.5. □

Remark 1.9 (Reflexive spaces). If𝒳 is reflexive it is easy to see that the dual-dual func-
tional (𝐽∗)∗ equals 𝐽 and the same holds for the quotients (𝑅∗)∗ = 𝑅. Hence, in this case
the eigenvalue problems (1.21) and (1.24) are equivalent in the sense that the subgra-
dients of one problem are solutions to the other problem.

1.4. Functions andmeasures. Having some abstract theory of nonlinear eigenvalue
problems in Banach spaces at hand, we now introduce the setup for the L∞-type prob-
lem that we are studying.
For a bounded domain Ω ⊂ ℝ𝑛 we let C0(Ω) denote the space of all continuous

functions onΩwhich vanish on 𝜕Ω. Equipped with the norm ‖𝑢‖∞ ≔ maxΩ |𝑢| this is
a Banach space. We note that C0(Ω) = C0(Ω) and is hence a closed subspace of C(Ω).
Its dual space is given by the space of finite and signed Radon measuresℳ(Ω) on Ω
equipped with the total variation norm ‖𝜇‖ℳ(Ω) ≔ |𝜇| (Ω), and the duality pairing is

(1.26) ⟨𝜇, 𝑢⟩ ≔ ∫
Ω
𝑢 d𝜇.
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Weak∗ convergence of measures {𝜇𝑛}𝑛∈ℕ ⊂ ℳ(Ω) to 𝜇 ∈ ℳ(Ω) is denoted by 𝜇𝑛 ⇀∗ 𝜇
and means ⟨𝑢, 𝜇𝑛⟩ → ⟨𝑢, 𝜇⟩ for all 𝑢 ∈ C0(Ω). Because of the weak∗ lower semiconti-
nuity of the total variation, one has |𝜇| (Ω) ≤ lim inf𝑛→∞ |𝜇𝑛| (Ω).
We denote non-negativemeasures byℳ+(Ω) and abbreviate by𝒫(Ω) the set of prob-

ability measures which consists of all measures 𝜇 ∈ ℳ+(Ω) with 𝜇(Ω) = 1.
The space of vector-valued Radon measures on Ω is denoted asℳ(Ω,ℝ𝑛) and can

be equipped with the same notion of convergence. The so-called divergence-measure
fields [16–18, 41] constitute an important subclass of vector-valued Radon measures,
which will turn out to be essential for studying L∞ variational problems.

Definition 1.10 (Divergence-measure field). Ameasure 𝜎 ∈ ℳ(Ω,ℝ𝑛) is said to be a
divergence-measure field if there is a measure 𝜇 ∈ ℳ(Ω) such that

(1.27) −∫
Ω
∇𝜑 ⋅ d𝜎 = ∫

Ω
𝜑d𝜇, ∀𝜑 ∈ C∞𝑐 (Ω).

In this case we write div 𝜎 ≔ 𝜇 and 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛).

We let Lip(Ω) denote the space of all Lipschitz continuous functions on Ω and let
Lip0(Ω) be the subspace of Lipschitz-functions vanishing on 𝜕Ω. A norm on Lip(Ω)
is given by ‖𝑢‖Lip(Ω) ≔ max(‖𝑢‖∞ , Lip(𝑢)), where Lip(𝑢) denotes the Lipschitz con-
stant of 𝑢 ∈ Lip(Ω). An equivalent norm on Lip0(Ω) is given by ‖𝑢‖Lip0(Ω) ≔ Lip(𝑢)
and because of the homogeneous boundary conditions it holds Lip(𝑢) = ‖∇𝑢‖L∞ ≔
ess sup𝑥∈Ω |∇𝑢(𝑥)|. We will again simplify our notation using Lip0(Ω) = Lip0(Ω) and
write Lip0(Ω) throughout the paper.
Finally, the space of smooth functions on Ω is denoted by C∞(Ω) and the subspace

of compactly supported test functions by C∞𝑐 (Ω).

2. Characterization of the L∞ eigenvalue problem

For a rigorous study of stationary points of the Rayleigh quotient

(2.1) Lip0(Ω) ∋ 𝑢 ↦
‖∇𝑢‖L∞
‖𝑢‖L∞

we have to extend the functional 𝑢 ↦ ‖∇𝑢‖L∞ to the Banach space C0(Ω) which lets
us apply the abstract results of Section 1.3. For 𝑢 ∈ C0(Ω) we therefore define the
absolutely one-homogeneous and convex functional

(2.2) 𝐽∞(𝑢) = sup{∫
Ω
𝑢 div 𝜎 d𝑥 ∶ 𝜎 ∈ C∞(Ω,ℝ𝑛), ‖𝜎‖L1 ≤ 1} , 𝑢 ∈ C0(Ω),

which satisfies dom(𝐽∞) = Lip0(Ω) and can be expressed as

𝐽∞(𝑢) = {‖∇𝑢‖L∞ , 𝑢 ∈ Lip0(Ω),
+∞, else.

Therefore, the Rayleigh quotient (2.1) can be replaced by the Rayleigh quotient

(2.3) 𝑅∞(𝑢) = 𝐽∞(𝑢)
‖𝑢‖∞

, 𝑢 ∈ C0(Ω).

The associated abstract eigenvalue problem (1.21) becomes
(2.4) 𝜆ΦC0(Ω)(𝑢) ∩ 𝜕𝐽∞(𝑢) ≠ ∅,



EIGENVALUE PROBLEMS IN L∞ 353

where 𝜕𝐽∞ denotes the subdifferential (1.15) of 𝐽∞ with respect to C0(Ω). In partic-
ular, by Proposition 1.5 minimizers of the Rayleigh quotient (2.3) are in one-to-one
correspondence to solutions of the eigenvalue problem (2.4) with eigenvalue 𝜆 = 𝜆∞.

2.1. Main result. Here we state our main theorem, the proof of which is given at the
end of Section 2.2. It features some objects which will be rigorously defined later. For
convenience, we outline their meaning here:
The sets 𝜔max(𝑢) andΩmax(𝑢) contain the points inΩwhere |𝑢| and |∇𝑢| are maxi-

mal (in a generalized sense) and will be defined rigorously in Definitions 2.5 and 2.11.
The notions of the tangential gradient∇𝜏𝑢 and Šilhavý’s pairing measure ⟪∇𝑢, 𝜎⟫will
be introduced in Definition 2.8 and Proposition 2.19, respectively. For now, the tan-
gential gradient∇𝜏𝑢(𝑥) can be thought of as projection of∇𝑢(𝑥) onto a linear subspace
“tangential” to the support of the measure 𝜏 at 𝑥. Furthermore, the pairing measure
⟪∇𝑢, 𝜎⟫ coincides with the measure ⟨∇𝑢, 𝜎⟩ in case that ∇𝑢 is continuous.

Theorem2.1 (L∞ eigenvalue problem). A function 𝑢 ∈ C0(Ω)⧵{0} solves the eigenvalue
problem

𝜆ΦC0(Ω)(𝑢) ∩ 𝜕𝐽∞(𝑢) ≠ ∅
if and only if there exist non-negative measures 𝜈, 𝜏 ∈ ℳ+(Ω) such that
(2.5) 𝜆𝜈𝑢 = −div(𝜏∇𝜏𝑢)
and they have the following properties:

• The measures have mass 𝜈(Ω) = 1
‖ᵆ‖∞

and 𝜏(Ω) = 1
‖∇ᵆ‖L∞

.
• 𝜈 is concentrated on the set 𝜔max(𝑢) where |𝑢| is maximal:

𝜈(Ω ⧵ 𝜔max(𝑢)) = 0.
• 𝜏 is concentrated on the setΩmax(𝑢) where |∇𝑢| is maximal:

𝜏(Ω ⧵ Ωmax(𝑢)) = 0.
• The measure 𝜎 ≔ 𝜏∇𝜏𝑢 fulfills the following identity for Šilhavý’s pairing mea-
sure [42]:

⟪∇𝑢, 𝜎⟫ = ‖∇𝑢‖L∞ |𝜎| .

Comparing the PDE (2.5) with the 𝑝-Laplacian eigenvalue problem (1.1) one iden-
tifies strong structural similarities. The singular terms |𝑢|𝑝−2 and |∇𝑢|𝑝−2 are replaced
by the measures 𝜈 and 𝜏, respectively. The occurrence of the tangential gradient ∇𝜏𝑢
instead of ∇𝑢 is due to the fact that our results apply to general solutions of the L∞-
problem and not only infinity harmonic limits of L𝑝-problems, where we conjecture
that ∇𝜏𝑢 coincides with ∇𝑢 (see Example 2.3 for a partial argument).
Having Theorem 2.1 at hand, we can now reformulate the nonlinear eigenvalue

problem
𝜆∞ΦC0(Ω) ∩ 𝜕𝐽∞(𝑢) ≠ ∅,

which arises as optimality condition for minimizers of the Rayleigh quotient (2.3), in a
way that strongly resembles the definition of infinity ground states (1.9). For compar-
ison we recap that infinity ground states solve

min (|∇𝑢| − 𝜆∞𝑢,−Δ∞𝑢) = 0.
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Corollary 2.2. Let 𝑢 ∈ Lip0(Ω) be a non-negative minimizer of the Rayleigh quotient
𝑅∞, meaning that 𝑅∞(𝑢) = 𝜆∞. Then it holds
(2.6) min ( ‖∇𝑢‖L∞ − 𝜆∞𝑢,− div(𝜏∇𝜏𝑢)) = 0
in the sense of measures.

Proof. From Theorem 2.1 we know that 𝑢 ≥ 0 solves 𝜆∞𝜈𝑢 = −div(𝜏∇𝜏𝑢) with a
measure 𝜈 ≥ 0 such that 𝜈(Ω ⧵ 𝜔max(𝑢)) = 0. Hence, it holds

−div (𝜏∇𝜏𝑢) = 𝜆∞𝜈𝑢 {
= 0, in Ω ⧵ 𝜔max(𝑢),
≥ 0, in 𝜔max(𝑢).

On the other hand, since 𝑢minimizes 𝑅∞ we obviously have

(2.7) ‖∇𝑢‖L∞ − 𝜆∞𝑢 {
≥ 0, in Ω ⧵ 𝜔max(𝑢),
= 0, in 𝜔max(𝑢).

Combining these two equations we obtain (2.6). □

Wewould like to emphasize that (2.6) is strikingly similar to (1.9) for infinity ground
states, however, it is valid for all non-negative minimizers of 𝑅∞. We will see in Re-
mark 3.6 that there may exist global minimizers of 𝑅∞ that change sign.

Example 2.3 (Infinity harmonic potentials). Our results can also be applied to infinity
harmonic potentials (1.10). By definition, these are absolutely minimizing Lipschitz
extensions on the open domain Ω ⧵ ℛΩ and by definition solve

(2.8) Δ∞𝑢 = 0 on Ω ⧵ ℛΩ.
In [20] (see also [19] for a similar result) the authors show that the solution of this
equation satisfies the divergence PDE

(2.9) div(𝜈∇𝑢) = 0 on Ω ⧵ ℛΩ

in a distributional sense. Here 𝜈 is a non-negative measure concentrated where ∇𝑢 is
maximal and it was shown that∇𝑢 exists on this set. Applying our Theorem 2.1 shows
that

(2.10) div(𝜏∇𝜏𝑢) = 0 on Ω ⧵ ℛΩ.
The following formal argument suggests that one might replace ∇𝜏𝑢 by ∇𝑢 for an in-
finity harmonic 𝑢 so that we recover the result of [20]. The set Ωmax(𝑢), where 𝜏 is
supported, is a level set of the function 𝑥 ↦ 1

2 |∇𝑢|
2. Assume that 𝑢 ∈ 𝐶2(Ω). Since 𝑢

is infinity harmonic, it holds that

⟨∇12 |∇𝑢|
2 , ∇𝑢⟩ = ⟨𝐷2𝑢∇𝑢,∇𝑢⟩ = Δ∞𝑢 = 0.

Hence, ∇𝑢 is orthogonal to∇ 1
2 |∇𝑢|

2 and therefore tangential to the level setΩmax(𝑢),
which implies ∇𝜏𝑢 = ∇𝑢.
This computation requires second derivatives of 𝑢; however, infinity harmonic func-

tions are typically not sufficiently smooth, see, e.g., [27]. Relating ∇𝜏𝑢 of a general
infinity harmonic function 𝑢 to its gradient ∇𝑢 without using second derivatives is a
challenging topic for future work.
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Remark 2.4 (Relation to previous results). Similar results to Theorem 2.1 can be found
in the paper [15] and the recent article [29] which appeared during completion of the
presentwork. In [15] the authors investigate infinity ground states (1.9)whereas in [29]
the more general problem minᵆ∈Lip0(Ω,ℝ𝑁) ‖𝑓(𝐷𝑢)‖L∞/‖𝑔(𝑢)‖∞ is studied, which op-
timizes over vector-valued Lipschitz functions and contains the minimization of (2.3)
as a special case. Both papers derive similar characterizations of the optimality con-
ditions, relying on the standard and somewhat technical approach of finite 𝑝 approxi-
mation. In contrast, our approach utilizes duality together with simple and elegant ar-
guments from convex analysis. Just as we do [15] utilizes tangential gradients whereas
[29] uses smooth approximation to characterize the gradient on the singular support
of the measure 𝜎. It is an open question whether this notion of gradient coincides with
the tangential gradient from our theory.

2.2. Characterizationof subdifferentials. For provingTheorem2.1wehave to char-
acterize the duality map and the subdifferential operator occurring in the eigenvalue
problem (2.4). To this end, we introduce the set where 𝑢 attains its maximal modulus:

Definition 2.5. For 𝑢 ∈ C0(Ω) we define
(2.11) 𝜔max(𝑢) = {𝑥 ∈ Ω ∶ |𝑢(𝑥)| = ‖𝑢‖∞}.

Because 𝑢 is continuous, the set 𝜔max(𝑢) is closed. We start with a characterization
of the duality map of C0(Ω).

Proposition 2.6 (Dualitymap). LetC0(Ω) be equippedwith the norm ‖⋅‖∞. The duality
map ΦC0(Ω)(𝑢) for 𝑢 ∈ C0(Ω) ⧵ {0} consists of all measures 𝜇 ∈ ℳ(Ω) with |𝜇| (Ω) = 1
and

(2.12) 𝑢 d𝜇
d |𝜇| = ‖𝑢‖∞ , |𝜇| − a.e.,

where d𝜇
d|𝜇| ∈ L1|𝜇|(Ω) is the Radon–Nikodým derivative of 𝜇 w.r.t. its total variation.

Moreover, any such 𝜇 satisfies
(2.13) |𝜇| (Ω ⧵ 𝜔max(𝑢)) = 0
and has the polar decomposition

(2.14) 𝜇 = 𝑢
‖𝑢‖∞

|𝜇| .

Proof. If 𝜇 ∈ ℳ(Ω) admits |𝜇| (Ω) = 1 and (2.12) it holds

⟨𝜇, 𝑢⟩ = ∫
Ω
𝑢 d𝜇 = ∫

Ω
𝑢 d𝜇
d |𝜇| d |𝜇| = ‖𝑢‖∞ |𝜇| (Ω) = ‖𝑢‖∞ ,

which implies 𝜇 ∈ Φ𝒳(𝑢).
Conversely, let us assume that 𝜇 ∈ Φ𝒳(𝑢). Then it holds

‖𝑢‖∞ = ∫
Ω
𝑢 d𝜇 = ∫

Ω
𝑢 d𝜇
d |𝜇| d |𝜇| ≤ ∫

Ω
|𝑢| d |𝜇| ≤ ‖𝑢‖∞∫

Ω
d |𝜇| ≤ ‖𝑢‖∞

and, in particular, all inequalities in this estimate are equalities. Since 𝑢 ≠ 0, this
implies that the identity (2.12) holds true and that |𝜇| (Ω) = 1. Second, it shows that |𝜇|-
a.e. it holds |𝑢| = ‖𝑢‖∞ which is equivalent to (2.13). We finish the proof by computing
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the polar decomposition (2.14). For this we compute

‖𝑢‖∞ = 𝑢 d𝜇
d |𝜇| ≤ |𝑢| ≤ ‖𝑢‖∞ , |𝜇| − 𝑎.𝑒.

Hence, equality holds true and 𝑢 and d𝜇
d|𝜇| have the same sign |𝜇|-a.e. This implies

𝜇 = d𝜇
d |𝜇| |𝜇| =

𝑢
‖𝑢‖∞

|𝜇| .

□

Now we characterize the subdifferential of 𝐽∞(𝑢), which is significantly more in-
volved. We first prove an integral characterization similar to [6]—which deals with the
subdifferential of the total variation functional—and then prove a pointwise one. The
main insight from the following integral characterization is that the space of divergence-
measure fields, defined in Definition 1.10, is strongly connected to the subdifferential
of 𝐽∞.

Proposition 2.7 (Integral characterization of 𝜕𝐽∞). Let 𝑢 ∈ Lip0(Ω). Then it holds
(2.15) 𝜕𝐽∞(𝑢) = {−div 𝜎 ∶ 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛), ⟨− div 𝜎, 𝑢⟩ = 𝐽∞(𝑢), |𝜎|(Ω) ≤ 1} .
Ameasure 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛) such that −div 𝜎 ∈ 𝜕𝐽∞(𝑢) is called calibration of 𝑢.

Proof. Following [6] we have to show that the closure of the set

(2.16) 𝐶 ≔ {−div 𝜎 ∶ 𝜎 ∈ C∞(Ω), ‖𝜎‖L1 ≤ 1}
with respect to the total variation norm onℳ(Ω) is given by
(2.17) 𝐶 = {−div 𝜎 ∶ 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛), |𝜎| (Ω) ≤ 1} ≕ 𝐾.
Since 𝐶 ⊂ 𝐾 is obviously true, we first show that 𝐾 is closed which implies 𝐶 ⊂ 𝐾.
To this end, let us take a sequence {𝜎𝑛}𝑛∈ℕ ⊂ ℳ(Ω,ℝ𝑛) such that |𝜎𝑛| (Ω) ≤ 1 and
−div 𝜎𝑛 → 𝜇 ∈ ℳ(Ω). Then there is a vector-valued Radon measure 𝜎 ∈ ℳ(Ω,ℝ𝑛)
such that (up to a subsequence that we do not relabel) 𝜎𝑛 ⇀∗ 𝜎 and hence |𝜎|(Ω) ≤ 1,
by lower semicontinuity of the total variation. Moreover, we obtain

⟨𝜎, ∇𝜑⟩ = lim
𝑛→∞

⟨𝜎𝑛, ∇𝜑⟩ = lim
𝑛→∞

⟨− div 𝜎𝑛, 𝜑⟩ = ⟨𝜇, 𝜑⟩, ∀𝜑 ∈ C∞𝑐 (Ω),

which means that 𝜇 = −div 𝜎. To show that 𝐾 ⊂ 𝐶 it suffices to prove that

⟨− div 𝜎, 𝑢⟩ ≤ 𝐽∞(𝑢), ∀𝑢 ∈ dom(𝐽∞).
By [13] we can find a sequence {𝑢𝑛}𝑛∈ℕ ⊂ C∞𝑐 (Ω) which satisfies ‖𝑢𝑛 − 𝑢‖∞ → 0 as
𝑛 → ∞ and 𝐽∞(𝑢𝑛) ≤ 𝐽∞(𝑢). Then it holds

⟨− div 𝜎, 𝑢⟩ = lim
𝑛→∞

⟨− div 𝜎, 𝑢𝑛⟩ = lim
𝑛→∞

⟨𝜎, ∇𝑢𝑛⟩ ≤ lim
𝑛→∞

𝐽∞(𝑢𝑛) ≤ 𝐽∞(𝑢),

which lets us conclude. □

Before we proceed with a pointwise characterization of calibrations 𝜎 which satisfy
−div 𝜎 ∈ 𝜕𝐽∞(𝑢), we need to understand how the integration-by-parts formula

∫
Ω
∇𝑢 ⋅ d𝜎 = −∫

Ω
𝑢 d div 𝜎 = 𝐽∞(𝑢)
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can be made rigorous. Assuming for a moment that the formula is valid one can show
analogously to Proposition 2.6 that 𝜎 is parallel to ∇𝑢 and that 𝜎 is supported where
|∇𝑢| is maximal.
The problem with this formula is that integral of the L∞-function ∇𝑢 with respect

to the (non-absolutely continuous) measure 𝜎 is not well-defined. This can be fixed by
replacing ∇𝑢 with the tangential gradient with respect to |𝜎|, a concept that goes back
to [5]. We will use Definition 2.8, which is a slight modification of [26, Def. 4.6]. For
details, we refer the reader to [15, 26]. We would also like to point to [40] for a novel
characterization of the tangential gradient as minimal norm element of a set-valued
gradient operator.

Definition 2.8 (Tangential gradient). Let 𝑢 ∈ Lip0(Ω) and 𝜇 ∈ ℳ+(Ω) be a non-
negative measure. Let {𝑢𝑛}𝑛∈ℕ ⊂ C∞𝑐 (Ω) be any sequence such that

sup
𝑛∈ℕ

max
𝑥∈Ω

|∇𝑢𝑛(𝑥)| ≤ 𝐽∞(𝑢),(2.18a)

max
𝑥∈Ω

|𝑢𝑛(𝑥) − 𝑢(𝑥)| → 0.(2.18b)

Denote by 𝑃𝜇(𝑥, ∇𝑢𝑛(𝑥)) the projection of the gradient ∇𝑢𝑛(𝑥) onto the tangent space
of 𝜇 at 𝑥 ∈ Ω (see [26, Def. 4.3] and [21] for relations to other notions of tangent spaces
to a measure). The tangential gradient of 𝑢with respect to 𝜇 is defined as the following
limit with respect to the weak∗ convergence in L∞𝜇 (Ω,ℝ𝑛)

∇𝜇𝑢 ≔ weak∗- lim
𝑛→∞

𝑃𝜇(⋅, ∇𝑢𝑛(⋅)).

By [26, Prop. 4.5], this limit exists and does not depend on the choice of the approx-
imating sequence {𝑢𝑛}𝑛∈ℕ. We note that the operation 𝜙(⋅) ↦ 𝑃𝜇(⋅, 𝜙(⋅)) is nonlinear
in 𝜙.

Lemma 2.9. Let 𝑢 ∈ Lip0(Ω) and 𝜇 ∈ ℳ+(Ω). Then
||∇𝜇𝑢|| ≤ 𝐽∞(𝑢) 𝜇-a.e.

Proof. Since 𝑃𝜇(⋅, ∇𝑢𝑛(⋅)) ⇀∗ ∇𝜇𝑢 and norms are weakly* lower-semicontinuous, we
get

‖
‖∇𝜇𝑢‖‖L∞𝜇

≤ lim inf
𝑛→∞

‖
‖𝑃𝜇(⋅, ∇𝑢𝑛(⋅))

‖
‖L∞𝜇

≤ lim inf
𝑛→∞

‖∇𝑢𝑛‖L∞𝜇 ≤ 𝐽∞(𝑢),

which implies the claim. Here we used the fact that ||𝑃𝜇(𝑥, ∇𝑢𝑛(𝑥))|| ≤ |∇𝑢𝑛(𝑥)| ≤
𝐽∞(𝑢) for all 𝑥 ∈ Ω, using condition (2.18a). □

Proposition 2.10 (Integration by parts). Let 𝑢 ∈ Lip0(Ω) and 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛). Then

(2.19) −∫
Ω
𝑢 d div 𝜎 = ∫

Ω
∇|𝜍|𝑢 ⋅ d𝜎.

Proof. The proof is a straightforward adaption of [26, Prop. 4.10]. Let {𝑢𝑛}𝑛∈ℕ ⊂ C∞𝑐 (Ω)
be a sequence satisfying (2.18). Then we can compute

−∫
Ω
𝑢 d div 𝜎 = − lim

𝑛→∞
∫
Ω
𝑢𝑛 d div 𝜎 = lim

𝑛→∞
∫
Ω
∇𝑢𝑛 ⋅ d𝜎

= lim
𝑛→∞

∫
Ω
∇𝑢𝑛 ⋅

d𝜎
d |𝜎| d |𝜎| .
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(a) Ωmax = Ω \ {0} (b) Ωmax = ∅ (c) Ωmax = Ω \ {diags}

x
yA

A′

B

B′

(d) Ωmax = Pxy(AA′) ∪
Pxy(BB′). Pxy is projec-
tion onto xy-plane.

Figure 1: Functions from Examples 2.13 to 2.16

We continue with a few examples that illustrate the definition of Ωmax(u).

Example 2.13 (Distance function of an interval). Let Ω := (−1, 1) and u(x) := dΩ(x) = 1−|x| be
the distance function (sketched in Figure 1a). Choosing un to be a sequence of smooth symmetric
approximations satisfying (2.18), we see that limn→∞ |u′n(x)| = 1 for x 6= 0 and u′n(0) = 0 for all
n. Therefore, Ωmax(u) = (−1, 0) ∪ (0, 1).

Example 2.14 (A function with empty Ωmax). Let Ω := (−1, 1) and u(x) = 1−2 |x|+x2 (sketched
in Figure 1b). In this case |u′| increases towards the origin and the maximal value is attained at
zero, where u is not differentiable. Choosing again un to be a sequence of smooth symmetric
approximations satisfying (2.18), we see that

lim
n→∞

|u′n(x)| =

{
2 |x− sign(x)| < 2 = J∞(u), x ∈ (−1, 0) ∪ (0, 1),

0, x = 0.

Hence Ωmax(u) = ∅.

Example 2.15 (Distance function of a square). Let Ω := (−1, 1)2 and u(x) := dΩ(x) =
1 − max(|x| , |y|). A sketch is shown in Figure 1c. Choose again a (radially) symmetric
smooth approximating sequence un. Since u is differentiable everywhere except for the diago-
nals (−1,−1)(1, 1) and (−1, 1)(1,−1), we have limn→∞∇un(x) = ∇u(x) everywhere except for
the diagonals. A calculation shows that on the diagonals limn→∞ |∇un(x)| = 1√

2
, i.e.,

lim
n→∞

|∇un(x)| =

{
1 = J∞(u), x /∈ diagonals,
1√
2
< J∞(u), x ∈ diagonals.

Hence, Ωmax(u) = Ω \ {diagonals}.

Example 2.16. (Mountain ridge) Let Ω = (−1, 1)2 and denote
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Since |𝜎|-a.e. the function d𝜍
d|𝜍| lies in the tangent space of |𝜎| (see [26, Lem. 4.9]), we

get

∇𝑢𝑛 ⋅
d𝜎
d |𝜎| = 𝑃|𝜍|(⋅, ∇𝑢𝑛(⋅)) ⋅

d𝜎
d |𝜎| , |𝜎| − a.e.,

and hence by the definition of the tangential gradient:

−∫
Ω
𝑢 d div 𝜎 = lim

𝑛→∞
∫
Ω
𝑃|𝜍|(⋅, ∇𝑢𝑛(⋅)) ⋅

d𝜎
d |𝜎| d |𝜎|

= ∫
Ω
∇|𝜍|𝑢 ⋅

d𝜎
d |𝜎| d |𝜎| = ∫

Ω
∇|𝜍|𝑢 ⋅ d𝜎.

□

With the same approximation trick, we can define the set where a function 𝑢 ∈
Lip0(Ω) attains the maximal value of its gradient in a sense that will become clear in
Proposition 2.18.

Definition 2.11. Let 𝑢 ∈ Lip0(Ω) and consider any sequence {𝑢𝑛}𝑛∈ℕ ⊂ C∞𝑐 (Ω) satis-
fying (2.18). We define

Ωmax(𝑢) ≔ {𝑥 ∈ Ω∶ lim sup
𝑛→∞

|∇𝑢𝑛(𝑥)| = ‖∇𝑢‖L∞ }.

Similarly to Definition 2.8, Definition 2.11 does not depend on the choice of the ap-
proximating sequence (cf. [26, Prop. 4.5]).

Remark 2.12. Definition 2.11 bears similarities with the attainment set defined in [7]
as

𝒜(𝑢) ≔ {𝑥 ∈ Ω ∶ |∇𝑢| (𝑥) = ‖∇𝑢‖L∞ }.
Here 𝑥 ↦ |∇𝑢| (𝑥) denotes an everywhere-defined version of the L∞-function 𝑥 ↦
|∇𝑢(𝑥)|, defined as

|∇𝑢| (𝑥) ≔ lim
𝑟↓0

inf{𝜆 > 0 ∶ 𝑢(𝑦) − 𝑢(𝑥) ≤ 𝜆 |𝑦 − 𝑥| , ∀𝑦 ∈ 𝐵𝑟(𝑥)} , 𝑥 ∈ Ω.

It is not unlikely that under suitable regularity conditions the sets Ωmax(𝑢) and 𝒜(𝑢)
coincide, however, for dealing with tangential gradients our definition is more useful.

We continue with a few examples that illustrate the definition of Ωmax(𝑢).
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Example 2.13 (Distance function of an interval). LetΩ ≔ (−1, 1) and𝑢(𝑥) ≔ dΩ(𝑥) =
1−|𝑥| be the distance function (sketched in Figure 1(a)). Choosing 𝑢𝑛 to be a sequence
of smooth symmetric approximations satisfying (2.18), we see that lim𝑛→∞ |𝑢′𝑛(𝑥)| = 1
for 𝑥 ≠ 0 and 𝑢′𝑛(0) = 0 for all 𝑛. Therefore, Ωmax(𝑢) = (−1, 0) ∪ (0, 1).
Example 2.14 (A functionwith emptyΩmax). LetΩ ≔ (−1, 1) and 𝑢(𝑥) = 1−2 |𝑥|+𝑥2
(sketched in Figure 1(b)). In this case |𝑢′| increases towards the origin and the maxi-
mal value is attained at zero, where 𝑢 is not differentiable. Choosing again 𝑢𝑛 to be a
sequence of smooth symmetric approximations satisfying (2.18), we see that

lim
𝑛→∞

|𝑢′𝑛(𝑥)| = {2 |𝑥 − sign(𝑥)| < 2 = 𝐽∞(𝑢), 𝑥 ∈ (−1, 0) ∪ (0, 1),
0, 𝑥 = 0.

Hence Ωmax(𝑢) = ∅.
Example 2.15 (Distance function of a square). LetΩ ≔ (−1, 1)2 and 𝑢(𝑥) ≔ dΩ(𝑥) =
1 − max(|𝑥| , |𝑦|). A sketch is shown in Figure 1(c). Choose again a (radially) sym-
metric smooth approximating sequence 𝑢𝑛. Since 𝑢 is differentiable everywhere ex-
cept for the diagonals (−1, −1)(1, 1) and (−1, 1)(1, −1), we have lim𝑛→∞∇𝑢𝑛(𝑥) =
∇𝑢(𝑥) everywhere except for the diagonals. A calculation shows that on the diagonals
lim𝑛→∞ |∇𝑢𝑛(𝑥)| = 1

√2
, i.e.,

lim
𝑛→∞

|∇𝑢𝑛(𝑥)| = {
1 = 𝐽∞(𝑢), 𝑥 ∉ diagonals,
1
√2

< 𝐽∞(𝑢), 𝑥 ∈ diagonals.

Hence, Ωmax(𝑢) = Ω ⧵ {diagonals}.
Example 2.16 (Mountain ridge). Let Ω = (−1, 1)2 and denote

𝜑(𝑥) ≔ 1 − 2 |𝑥| + 𝑥2, 𝜓(𝑦) ≔
⎧
⎨
⎩

2(𝑦 + 1), 𝑦 ∈ (−1,−0.5),
1, 𝑦 ∈ (−0.5, 0.5),
2(1 − 𝑦), 𝑦 ∈ (0.5, 1).

Let 𝑢(𝑥, 𝑦) ≔ 𝜑(𝑥)𝜓(𝑦) (sketched in Figure 1(d)). From Example 2.14 we know that
the partial derivative 𝜕ᵆ

𝜕𝑥 does not exist at 𝑥 = 0 and that for a symmetric approximating
sequence 𝑢𝑛 we have

lim
𝑛→∞

𝜕𝑢𝑛
𝜕𝑥

|||𝑥=0
= 0 < 𝐽∞(𝑢) = 2.

Since 𝑢(0, 𝑦) = 1 for 𝑦 ∈ (− 1
2 ,

1
2), we have

𝜕ᵆ
𝜕𝑦
||𝑥=0 = 0 and lim𝑛→∞

𝜕ᵆ𝑛
𝜕𝑦

||𝑥=0 = 0 for
𝑦 ∈ (− 1

2 ,
1
2). Hence,

lim
𝑛→∞

|∇𝑢𝑛(𝑥, 𝑦)| = 0 < 𝐽∞(𝑢) = 2 for 𝑥 = 0, 𝑦 ∈ (−12 ,
1
2).

For 𝑦 ∈ (−1,− 1
2) ∪ (

1
2 , 1), however, we have ||

𝜕ᵆ
𝜕𝑦
|| (0, 𝑦) = 2 and it is easy to convince

oneself that

lim
𝑛→∞

|∇𝑢𝑛(𝑥, 𝑦)| = 2 = 𝐽∞(𝑢) for 𝑥 = 0, 𝑦 ∈ (−1,−12) ∪ (
1
2 , 1).

Therefore, we conclude that

Ωmax(𝑢) = {(𝑥, 𝑦)∶ 𝑥 = 0, 𝑦 ∈ (−1,−12) ∪ (
1
2 , 1)} .
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In other words,Ωmax(𝑢) consists of projections onto the 𝑥𝑦-plane of the two open seg-
ments 𝐴𝐴′ and 𝐵𝐵′ shown in Figure 1(d). We note that on the whole set Ωmax(𝑢) the
gradient ∇𝑢 does not exist. In contrast, according to [20] the gradients of an infinity
harmonic potential exist on the so-called contact set 𝑃𝑥𝑦(𝐴𝐴′)∪𝑃𝑥𝑦(𝐵𝐵′)which implies
that the function 𝑢 which we constructed is no infinity harmonic potential.

Example 2.17 (Distance function of fat Cantor set). Let 𝐹 ⊂ [0, 1] be a Cantor set
[44] and let 𝑢(𝑥) = dist(𝑥, 𝐹) be the distance function to 𝐹. In this case Ωmax(𝑢) =
[0, 1] ⧵ (𝐹 ∪𝐷)where𝐷 is a countable discrete set, corresponding to the midpoints and
boundary points of the intervals which are removed from [0, 1] to construct the Cantor
set. We note that Ωmax(𝑢) is dense in [0, 1].

Now we are ready to give a pointwise characterization of the subdifferential of 𝐽∞.

Proposition2.18 (Pointwise characterization of calibrations, Part 1). Let𝑢 ∈ Lip0(Ω)⧵
{0} and 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛). It holds −div 𝜎 ∈ 𝜕𝐽∞(𝑢) if and only if |𝜎| (Ω) = 1 and

(2.20) ∇|𝜍|𝑢 ⋅
d𝜎
d |𝜎| = 𝐽∞(𝑢) |𝜎| − a.e.,

where ∇|𝜍| denotes the tangential gradient w.r.t. |𝜎| and d𝜍
d|𝜍| ∈ L1|𝜍|(Ω) is the Radon–

Nikodým derivative of 𝜎 w.r.t. its total variation. Moreover, any such 𝜎 satisfies

(2.21) |𝜎| (Ω ⧵ Ωmax(𝑢)) = 0

and has the polar decomposition

(2.22) 𝜎 =
∇|𝜍|𝑢
‖∇𝑢‖L∞

|𝜎| .

Proof. If 𝜎 fulfills (2.20) and |𝜎| (Ω) = 1, we obtain, using Proposition 2.10, that

−∫
Ω
𝑢 d div 𝜎 = ∫

Ω
∇|𝜍|𝑢 ⋅

d𝜎
d |𝜎| d |𝜎| = ∫

Ω
𝐽∞(𝑢) d |𝜎| = 𝐽∞(𝑢).

By Proposition 2.7, this implies −div 𝜎 ∈ 𝜕𝐽∞(𝑢).
Conversely, suppose that−div 𝜎 ∈ 𝜕𝐽∞(𝑢). By Proposition 2.7 we know |𝜎| (Ω) ≤ 1.

By mollification we can obtain a sequence {𝑢𝑛}𝑛∈ℕ ⊂ C∞𝑐 (Ω) that satisfies (2.18) as
in [13]. By the definition of the tangential gradient, for any 𝜓 ∈ L1|𝜍|(Ω) it holds

∫
Ω
𝜓(𝑥) ⋅ ∇|𝜍|𝑢(𝑥) d |𝜎| (𝑥) = lim

𝑛→∞
∫
Ω
𝜓(𝑥) ⋅ 𝑃|𝜍|(𝑥, ∇𝑢𝑛(𝑥)) d |𝜎| (𝑥).
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Utilizing this for 𝜓 = d𝜍
d|𝜍| ∈ L1|𝜍|(Ω) we get by Proposition 2.10

𝐽∞(𝑢) = −∫
Ω
𝑢 d(div 𝜎)

= ∫
Ω
∇|𝜍|𝑢 ⋅

d𝜎
d |𝜎| d |𝜎|

= lim
𝑛→∞

∫
Ω
𝑃|𝜍|(𝑥, ∇𝑢𝑛(𝑥)) ⋅

d𝜎
d |𝜎| (𝑥) d |𝜎| (𝑥)

≤ lim sup
𝑛→∞

∫
Ω
||𝑃|𝜍|(𝑥, ∇𝑢𝑛(𝑥))|| d |𝜎| (𝑥)

≤ lim sup
𝑛→∞

∫
Ω
|∇𝑢𝑛(𝑥)| d |𝜎| (𝑥)

≤ ∫
Ω
lim sup
𝑛→∞

|∇𝑢𝑛(𝑥)| d |𝜎| (𝑥)

≤ ∫
Ω
𝐽∞(𝑢) d |𝜎|

= 𝐽∞(𝑢).

(2.23)

Therefore, all inequalities are satisfied as equalities and in particular, since 𝑢 ≠ 0, it
holds |𝜎| (Ω) = 1. Furthermore,

(2.24) ∫
Ω
∇|𝜍|𝑢 ⋅

d𝜎
d |𝜎| d |𝜎| = ∫

Ω
𝐽∞(𝑢) d |𝜎| .

By Lemma 2.9 we have that

∇|𝜍|𝑢 ⋅
d𝜎
d |𝜎| ≤ ||∇|𝜍|𝑢|| ≤ 𝐽∞(𝑢) |𝜎|-a.e.,

hence, since𝑢 ≠ 0, equality in (2.24) is only possible if (2.20) holds. Furthermore, (2.23)
implies that

lim sup
𝑛→∞

|∇𝑢𝑛(𝑥)| = 𝐽∞(𝑢) |𝜎| − a.e.,

and therefore (2.21) holds.
For the polar decomposition (2.22) we compute using Lemma 2.9:

‖∇𝑢‖L∞ = ∇|𝜍|𝑢 ⋅
d𝜎
d |𝜎| ≤ ||∇|𝜍|𝑢|| ≤ ‖∇𝑢‖L∞ , |𝜎| − 𝑎.𝑒.

Hence, equality holds true and ∇|𝜍|𝑢 and d𝜍
d|𝜍| are linearly dependent |𝜎|-a.e. which

implies

𝜎 = d𝜎
d |𝜎| |𝜎| =

∇|𝜍|𝑢
‖∇𝑢‖L∞

|𝜎| .

□

In Proposition 2.18 we have proved that calibrations 𝜎 are concentrated in the set
Ωmax(𝑢) and parallel to the tangential gradient with respect to |𝜎|. We started by defin-
ing the conditional gradient Definition 2.8 using an approximating sequence and then
obtained an integration by parts formula in Proposition 2.10, which we later used in
Proposition 2.18. An alternative and in some sense complementary route is to use the
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pairing measure ⟪∇𝑢, 𝜎⟫, which was introduced by Šilhavý in [42] and for which the
integration by parts formula is part of the definition.

Proposition 2.19 (Šilhavý [42,43]). Let 𝑢 ∈ Lip0(Ω) and 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛). There exists
a unique signed measure ⟪∇𝑢, 𝜎⟫ ∈ ℳ(Ω) such that

−∫
Ω
𝑢 d div 𝜎 = ∫

Ω
d⟪∇𝑢, 𝜎⟫,(2.25)

|⟪∇𝑢, 𝜎⟫| (𝑈) ≤ ‖∇𝑢‖L∞(𝑈) |𝜎| (𝑈), ∀𝑈 ⊂ Ω open.(2.26)

Proof. The first statement is a special case of [43, Thm. 2.3]. The second one can be
found in [42, Prop. 5.2]. □

We can also formulate Proposition 2.18 in the language of the above pairing and
obtain a second pointwise characterization of calibrations 𝜎.

Proposition2.20 (Pointwise characterization of calibrations, Part 2). Let𝑢 ∈ Lip0(Ω)⧵
{0} and 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛). It holds −div 𝜎 ∈ 𝜕𝐽∞(𝑢) if and only if |𝜎| (Ω) = 1 and
(2.27) ⟪∇𝑢, 𝜎⟫ = 𝐽∞(𝑢)|𝜎|.
Here ⟪∇𝑢, 𝜎⟫ ∈ ℳ(Ω) denotes the pairing from Proposition 2.19.

Proof. If 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛) fulfills (2.27) and |𝜎| (Ω) = 1, we obtain from [43, Thm. 2.3]

−∫
Ω
𝑢 d div 𝜎 = ∫

Ω
d⟪∇𝑢, 𝜎⟫ = 𝐽∞(𝑢)∫

Ω
d |𝜎| = 𝐽∞(𝑢).

By Proposition 2.7, this implies −div 𝜎 ∈ 𝜕𝐽∞(𝑢).
Let us now assume that −div 𝜎 ∈ 𝜕𝐽∞(𝑢) for 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛). By Proposition 2.18

we know that |𝜎| (Ω) = 1. According to Proposition 2.19 it holds
|⟪∇𝑢, 𝜎⟫| (𝑈) ≤ 𝐽∞(𝑢) |𝜎| (𝑈), ∀𝑈 ⊂ Ω open,

which immediately implies

⟪∇𝑢, 𝜎⟫(𝑈) ≤ 𝐽∞(𝑢) |𝜎| (𝑈), ∀𝑈 ⊂ Ω open.
Using outer regularity of the measures [45], this implies that we have the following
inequality on all Borel sets

⟪∇𝑢, 𝜎⟫ ≤ 𝐽∞(𝑢) |𝜎| .
To show equality, let us assume that there exist 𝜀 > 0 and a Borel set 𝐵 ⊂ Ω with
|𝜎| (𝐵) > 0 such that ⟪∇𝑢, 𝜎⟫(𝐵) ≤ (1 − 𝜀)𝐽∞(𝑢) |𝜎| (𝐵). Then it follows

𝐽∞(𝑢) = −∫
Ω
𝑢 d div 𝜎 = ∫

Ω
d⟪∇𝑢, 𝜎⟫ ≤ 𝐽∞(𝑢) |𝜎| (Ω ⧵ 𝐵) + (1 − 𝜀) 𝐽∞(𝑢) |𝜎| (𝐵)

≤ (1 − 𝜀 |𝜎| (𝐵)) 𝐽∞(𝑢).
Since 𝑢 ≠ 0, this is a contradiction and hence we have shown (2.27). □

We havemade all the necessary preparations to prove ourmain result, Theorem 2.1.

Proof of Theorem 2.1. According to Propositions 2.6 and 2.7 a function 𝑢 ∈ C0(Ω)⧵ {0}
solves 𝜆ΦC0(Ω)(𝑢) ∩ 𝜕𝐽∞(𝑢) ≠ ∅ if and only if there exist measures 𝜇 ∈ ℳ(Ω) and
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𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛)with 𝜆𝜇 = −div 𝜎. Furthermore, in Proposition 2.6 it was proved that
𝜇 = ᵆ

‖ᵆ‖∞
|𝜇|. Therefore, the measure 𝜈 ≔ 1

‖ᵆ‖∞
|𝜇| satisfies 𝜈(Ω) = 1

‖ᵆ‖∞
and also

𝜈(Ω ⧵ 𝜔max(𝑢)) =
1

‖𝑢‖∞
|𝜇| (Ω ⧵ 𝜔max(𝑢)) = 0.

Analogously, Proposition 2.18 implies that 𝜎 = ∇|𝜍|ᵆ
‖∇ᵆ‖L∞

|𝜎|. Hence, the measure 𝜏 ≔
1

‖∇ᵆ‖L∞
|𝜎| satisfies 𝜏(Ω) = 1

‖∇ᵆ‖L∞
and also

𝜏(Ω ⧵ Ωmax(𝑢)) =
1

‖∇𝑢‖L∞
|𝜎| (Ω ⧵ Ωmax(𝑢)) = 0.

Furthermore, since |𝜎| and 𝜏 differ just by a nonzero constant multiple, it also holds
that ∇|𝜍|𝑢 = ∇𝜏𝑢. Hence, 𝜆𝜇 = −div 𝜎 is equivalent to 𝜆𝜈𝑢 = −div(𝜏∇𝜏𝑢) with the
above choices of 𝜈 and 𝜏.
Finally, the statement that 𝜎 = 𝜏∇𝜏𝑢 satisfies ⟪∇𝑢, 𝜎⟫ = ‖∇𝑢‖L∞ |𝜎| is the statement

of Proposition 2.20. This concludes the proof. □

3. Role of distance functions

In the previous section we have characterized the nonlinear eigenvalue problem
(2.4) which, in particular, is fulfilled by all minimizers of the Rayleigh quotient (2.3).
Now, we study the relations between general minimizers and the distance function,
which is always a minimizer of the Rayleigh quotient but no infinity ground state or
infinity harmonic potential, in general.
We first recall the well-known fact that the distance function is pointwise maximal

among all minimizers of the Rayleigh quotient and show that its gradients are parallel
to gradients of general minimizers, where the latter are maximal. Then, we construct
an inner distance function, which is the distance function to a generalized inball of
the domain Ω, and show that it is quasi-pointwise minimal among all minimizers.
The simple consequence is the known uniqueness of minimizers on stadium-like do-
mains [46], where the inner and the normal distance function coincide.
Very important for our following arguments is the fact that the distance function

𝑑Ω is pointwise maximal among all minimizers of 𝑅∞. For self-containedness we in-
clude the proof. We also show that the high ridge ℛΩ, defined in (1.11), where the
distance function attains its maximum, contains the set of maximal points of any other
minimizer of the Rayleigh quotient (2.3).
Proposition 3.1 (Maximality of the distance function). Let 𝑢 be aminimizer of𝑅∞ with
‖∇𝑢‖L∞ = 1, and let 𝑑Ω denote the distance function of 𝜕Ω. Then it holds that |𝑢| ≤ 𝑑Ω
and
(3.1) 𝜔max(𝑢) ⊂ 𝜔max(𝑑Ω) = ℛΩ.
Proof. For 𝑥 ∈ Ωwe let 𝑥Ω ∈ argmin𝑦∈𝜕Ω |𝑦 − 𝑥| denote a projection onto the bound-
ary. Then using the Lipschitz continuity of 𝑢 it holds

|𝑢(𝑥)| = |𝑢(𝑥) − 𝑢(𝑥Ω)| ≤ |𝑥 − 𝑥Ω| = 𝑑Ω(𝑥),
which proves the first claim. Since both 𝑢 and 𝑑Ω are minimizers it holds

‖𝑑Ω‖∞ = ‖𝑢‖∞ = |𝑢(𝑥)| ≤ 𝑑Ω(𝑥) ≤ ‖𝑑Ω‖∞ , 𝑥 ∈ 𝜔max(𝑢)
which proves (3.1). □
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We make another observation: using Proposition 3.1 we can show that gradients of
minimizers of the Rayleigh quotient are parallel to gradients of the distance function
on Ωmax(𝑢).

Proposition 3.2 (Parallelity of the gradients). Let 𝑢, 𝑣 ∈ Lip0(Ω) be non-negativemini-
mizers of𝑅∞ and assume that𝜔max(𝑣) = ℛΩ (e.g., 𝑣 could be the distance function (1.4)).
Then it holds

(3.2) ∇𝜏𝑢 ⋅ ∇𝜏𝑣 = |∇𝜏𝑢| |∇𝜏𝑣|, 𝜏-a.e. inΩ,
where 𝜏 ∈ ℳ+(Ω) solves the optimality condition (2.5) for 𝑢.

Proof. Thanks to Theorem 2.1 there exist measures 𝜈, 𝜏 with 𝜆∞𝜈𝑢 = −div(𝜏∇𝜏𝑢)
where supp 𝜈 ⊂ 𝜔max(𝑢) ⊂ ℛΩ = 𝜔max(𝑣). Letting 𝜇 ≔ 𝜈𝑢 ∈ ΦC0(Ω)(𝑢) and
𝜎 ≔ 𝜏∇𝜏𝑢 ∈ 𝜕𝐽∞(𝑢), we get

𝐽∞(𝑣) = 𝜆∞ ‖𝑣‖∞ = 𝜆∞∫
Ω
𝑣 d𝜇 = −∫

Ω
𝑣 d div 𝜎 = ∫

Ω
∇|𝜍|𝑣 ⋅ d𝜎

= ∫
Ω
∇|𝜍|𝑣 ⋅

∇|𝜍|𝑢
‖∇𝑢‖L∞

d |𝜎| ≤ ∫
Ω
||∇|𝜍|𝑣||

||∇|𝜍|𝑢||
‖∇𝑢‖L∞

d |𝜎|

≤ 𝐽∞(𝑣),
where we used Lemma 2.9 for the last inequality. Hence, ∇|𝜍|𝑢 ⋅ ∇|𝜍|𝑣 − |∇|𝜍|𝑢||∇|𝜍|𝑣|
integrates to zero with respect to |𝜎|, despite being nonpositive. This is only possible if
the expression equals zero 𝜎-a.e. Using |𝜎| = 𝜏 𝐽∞(𝑢) yields the desired statement. □

Next we study the role of another distance function which is essentially pointwise
minimal among all minimizers of𝑅∞. To this endwe define the generalized inball ofΩ
as

(3.3) Ωin ≔ {𝑥 ∈ Ω ∶ dist(𝑥,ℛΩ) < 𝑟Ω},
which is a ball if the high ridgeℛΩ is a singleton and a stadium-like domain otherwise.
Now we define the distance function on Ωin extended by zero as

(3.4) 𝑑in(𝑥) = {dist(𝑥, 𝜕Ωin), 𝑥 ∈ Ωin,
0, 𝑥 ∈ Ω ⧵ Ωin,

and we refer to it as inner distance function.

Proposition 3.3. The inner distance function 𝑑in fulfills the relation
(3.5) 𝑑in(𝑥) = max(𝑟Ω − dist(𝑥,ℛΩ), 0), 𝑥 ∈ Ω.

Proof. For 𝑥 ∈ Ω ⧵ Ωin the identity is trivially true. Let therefore 𝑥 ∈ Ωin and we
have to show that dist(𝑥, 𝜕Ωin) = 𝑟Ω − dist(𝑥,ℛΩ). We can find two points 𝑥0 ∈ ℛΩ
and ̄𝑥 ∈ 𝜕Ωin such that dist(𝑥, ℛΩ) = |𝑥 − 𝑥0| and dist(𝑥, 𝜕Ωin) = |𝑥 − ̄𝑥|. Using the
triangle inequality, we can establish the inequality

dist(𝑥, 𝜕Ωin) + dist(𝑥, ℛΩ) = |𝑥 − ̄𝑥| + |𝑥 − 𝑥0| ≥ | ̄𝑥 − 𝑥0| ≥ 𝑟Ω.
Let us now consider the point 𝑧𝜆 ≔ 𝑥 + 𝜆 𝑥−𝑥0

|𝑥−𝑥0|
. One can easily compute that

|𝑧𝜆 − 𝑥0| = |𝑥 − 𝑥0| + 𝜆
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and hence 𝑧𝜆 ∈ 𝜕Ωin iff 𝜆 = 𝑟Ω − |𝑥 − 𝑥0|. For this value of 𝜆 we can compute
dist(𝑥, 𝜕Ωin) + dist(𝑥, ℛΩ) ≤ |𝑥 − 𝑧𝜆| + |𝑥 − 𝑥0| = 𝜆 + |𝑥 − 𝑥0| = 𝑟Ω.

Hence, we have established both inequalities and showed (3.5). □

Obviously 𝑑in is also a minimizer of 𝑅∞ since it holds

𝑅∞(𝑑in) =
‖∇𝑑in‖∞
‖𝑑in‖∞

= 1
𝑟Ω

= 𝜆∞.

Notably, ifℛΩ is not a singleton, 𝑑in is not minimal among all minimizers of 𝑅∞ since
cone-like functions with tips in ℛΩ lie below 𝑑in. However, we have the following
result:

Proposition 3.4 (Quasi-minimality of the inner distance function). IfℛΩ is a singleton,
then 𝑑in ≤ |𝑢| for all 𝑢 ∈ argmin𝑅∞ with ‖∇𝑢‖L∞ = 1. In general, it holds that 𝑑in ≤ |𝑢|
for all 𝑢 ∈ argmin𝑅∞ that satisfy ‖∇𝑢‖L∞ = 1 and argmax|𝑢| = ℛΩ.

Proof. Since the first statement is a special case of the second one, we only prove the
latter. To this end assume that argmax|𝑢| = ℛΩ. Outside Ωin nothing needs to
be shown so we assume that there is 𝑥 ∈ Ωin with |𝑢(𝑥)| < 𝑑in(𝑥). Letting 𝑥0 ∈
argmin𝑦∈ℛΩ

|𝑦 − 𝑥| be a projection of 𝑥 onto the closed set ℛΩ, it holds using (3.5)

|𝑢(𝑥0) − 𝑢(𝑥)| ≥ |𝑢(𝑥0)| − |𝑢(𝑥)|
> 𝑑in(𝑥0) − 𝑑in(𝑥)
= (𝑟Ω − dist(𝑥0, ℛΩ) − (𝑟Ω − dist(𝑥,ℛΩ))
= dist(𝑥,ℛΩ)
= |𝑥 − 𝑥0|,

which again contradicts the fact that 𝑢 has unit Lipschitz constant. □

Since on stadium-like domains it holds Ωin = Ω and hence 𝑑Ω = 𝑑in, one obtains
uniqueness of minimizers which take their maximum on ℛΩ.

Corollary 3.5 (Stadium-like domains). LetΩ be a stadium-like domain, meaningΩ =
{𝑥 ∈ ℝ𝑛 ∶ dist(𝑥, ℛΩ) < 𝑟Ω}. Then there is exactly one minimizer of 𝑅∞ which takes its
maximum onℛΩ and it is given by the distance function dist(⋅, 𝜕Ω).
Remark 3.6 (Sign-changingminimizers). IfΩ is not a stadium-like domain,minimizers
of 𝑅∞ exist, which change their sign. To construct such a minimizer �̃�, one can set
�̃� = 𝑑in onΩin and extend it by a sign-changing function inΩ⧵Ωin in such a way that
both ‖�̃�‖∞ = ‖𝑑in‖∞ and ‖∇�̃�‖∞ = ‖∇𝑑in‖∞.
Corollary 3.5 simplifies parts of the proof of uniqueness for infinity ground states on

stadium-like domains from [46]:

Corollary 3.7 (Uniqueness of infinity ground states). LetΩ be a stadium-like domain
such thatℛΩ is Lipschitz-connected. Then any solution of (1.9) coincides with a multiple
of the distance function.

Proof. In [46] it was proved that every ground state takes its maximum on ℛΩ if the
high ridge is Lipschitz-connected. Hence, Corollary 3.5 immediately gives uniqueness.

□
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Example 3.8 (Distance function of a ball). Let Ω = 𝐵1(0) be the 𝑛-dimensional unit
ball and 𝑑Ω(𝑥) = 1−|𝑥| be the distance function to 𝜕Ω. Then𝑑Ω satisfies the eigenvalue
problem (2.5) with 𝜆∞ = 1, 𝜈 = 𝛿0, and 𝜏 being the absolutely continuous measure
d𝜏(𝑥) = − 1

𝜔𝑛|𝑥|𝑛−1
d𝑥. Here 𝜔𝑛 is the surface area of 𝐵1(0).

To see that this is true, we note that by construction −div(𝜏∇𝜏𝑑Ω) ∈ 𝜕𝐽∞(𝑑Ω) as
one can easily check. It remains to check that it equals 𝛿0 = ΦC0(Ω)(𝑑Ω) as measure.
To this end, we take a smooth test function 𝜑 ∈ C∞𝑐 (Ω) with compact support and
compute

⟨− div(𝜏∇𝜏𝑑Ω), 𝜑⟩ = ∫
𝐵1(0)

∇𝜑(𝑥) ⋅ ∇𝜏𝑑Ω(𝑥) d𝜏(𝑥) = −∫
𝐵1(0)

1
𝜔𝑛

𝑥
|𝑥|𝑛 ⋅ ∇𝜑 d𝑥.

At this point we observe that 𝑥 ↦ − 1
𝜔𝑛

𝑥
|𝑥|𝑛 is precisely the gradient of the fundamental

solution �̂� to the Laplace equation on ℝ𝑛, given by

�̂�(𝑥) = {
− 1
2𝜋 log |𝑥|, 𝑛 = 2,
1

𝜔𝑛(𝑛−2)
1

|𝑥|𝑛−2 , 𝑛 > 2.
Since �̂� solves −Δ�̂� = 𝛿0 in the sense of distributions, we obtain

⟨− div(𝜏∇𝜏𝑑Ω), 𝜑⟩ = ⟨∇�̂�, ∇𝜑⟩ = ⟨𝛿0, 𝜑⟩, ∀𝜑 ∈ C∞𝑐 (Ω),
which concludes the proof.

In Example 3.8 we had the situation that a minimizer 𝑢 satisfies 𝜏∇𝜏𝑢 = ∇�̂�, where
�̂� denotes the fundamental solution of the Laplace equation on the whole space. How-
ever, this is certainly not the case on general domains. On a square, for instance, the
gradients of the distance function do not have the same direction as �̂�. Still, also for
general domains the rotation-free component of the measure 𝜏∇𝜏𝑢 equals ∇�̂� as we
see from the following more general example.

Example 3.9. Let 𝑢 be an arbitrary solution of the problem (2.5) with 𝜆 = 𝜆∞ and
‖∇𝑢‖L∞ = 1. According to Theorem 2.1 there is 𝜎 ∈ 𝒟ℳ(Ω,ℝ𝑛) and 𝜇 ∈ ℳ(Ω)
supported in 𝜔max(𝑢) ⊂ ℛΩ such that

−div 𝜎 = 𝜆∞𝜇.
Indeed, this holds for 𝜎 ≔ 𝜏∇𝜏𝑢 and 𝜇 ≔ 𝜈𝑢. It is known that the high ridge ℛΩ has
finite ℋ𝑛−1-measure [35] and hence the same holds for supp𝜇. We let �̂� denote the
solution of the problem

−Δ�̂� = 1
𝑟Ωℋ𝑛−1(supp𝜇)ℋ

𝑛−1 supp𝜇,

which canbe constructed by integratingGreen’s function of theLaplacian along supp𝜇.
We can rewrite the optimality condition for 𝑢 as

−div 𝜎 = 1
𝑟Ωℋ𝑛−1(supp𝜇)ℋ

𝑛−1
supp𝜇 .

Plugging in the fundamental solution we get
−div 𝜎 = −Δ�̂� = −div∇�̂�.

Consequently, it holds
𝜎 = ∇�̂� + 𝜌
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where 𝜌 ∈ 𝒟ℳ(Ω,ℝ𝑛) is a suitable divergence-measure field with div 𝜌 = 0 such that
|𝜎| = 1. This decomposition of 𝜎 is similar towhat was shown in [13] for amore regular
situation, where 𝜎 is restricted to be an L2 vector field.

4. Relation to optimal transport

In light of the abstract Proposition 1.8 we now investigate duality for minimizers of
𝑅∞ given by (2.3). Here we discover an interesting relationship to an optimal transport
problem, generalizing the observations of [15] for infinity ground states to arbitrary
minimizers of the Rayleigh quotient ‖∇𝑢‖L∞ / ‖𝑢‖∞.
To this endwe note that according toDefinition 1.7 the dual functional of 𝐽∞ is given

by

(4.1) 𝐽∞∗ (𝜇) = sup{∫
Ω
𝑢 d𝜇 ∶ 𝑢 ∈ Lip0(Ω), ‖∇𝑢‖L∞ ≤ 1} , 𝜇 ∈ ℳ(Ω),

which is very similar to the Kantorovich–Rubinstein (KR) norm
(4.2)
‖𝜇‖KR(Ω) = sup{∫

Ω
𝑢 d𝜇 ∶ 𝑢 ∈ Lip(Ω), ‖∇𝑢‖L∞ ≤ 1, ‖𝑢‖∞ ≤ 1} , 𝜇 ∈ ℳ(Ω).

The dual norm in C0(Ω)∗ = ℳ(Ω) is given by the total variation |𝜇|(Ω). Hence, the
dual quotient to 𝑅∞ is given by

(4.3) 𝑅∞∗ (𝜇) =
|𝜇| (Ω)
𝐽∞∗ (𝜇)

, 𝜇 ∈ ℳ(Ω) ⧵ {0}.

Let us first understand the role of 𝐽∞∗ which can be interpreted both as an optimal
transport distance to the boundary of the domain and as a norm on a quotient space. To
see this, we first define the 1-Wasserstein distance between two probability measures
𝜇, 𝜈 ∈ 𝒫(Ω) as

(4.4) 𝑊 1(𝜇, 𝛿) = sup{∫
Ω
𝑢 d𝜇 −∫

Ω
𝑢 d𝛿 ∶ 𝑢 ∈ Lip(Ω), ‖∇𝑢‖L∞ ≤ 1} .

Note that ‖∇𝑢‖L∞ equals the Lipschitz constant of 𝑢 with respect to the geodesic dis-
tance on Ω (see [3, Eq. (1.6)]), which is why we call 𝑊 1(⋅, ⋅) a geodesic Wasserstein
distance.

Proposition 4.1. For every 𝜇 ∈ 𝒫(Ω) it holds

(4.5) 𝐽∞∗ (𝜇) = inf
𝛿∈𝒫(𝜕Ω)

𝑊 1(𝜇, 𝛿).

Proof. Since the set {𝑢 ∈ Lip(Ω)∶ ‖∇𝑢‖L∞ ≤ 1} is convex and weakly-* compact,
the set {𝛿 ∈ 𝒫(Ω)∶ supp(𝛿) ⊂ 𝜕Ω} is convex and the objective function is weakly-*
continuous, we apply the Nonsymmetrical Minmax Theorem from [4, Th. 3.6.4] and
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obtain

inf
𝛿∈𝒫(𝜕Ω)

𝑊 1(𝜇, 𝛿) = sup
ᵆ∈Lip(Ω)
‖∇ᵆ‖L∞≤1

inf
𝛿∈𝒫(𝜕Ω)

∫
Ω
𝑢 d𝜇 −∫

Ω
𝑢 d𝛿

= sup
ᵆ∈Lip(Ω)
‖∇ᵆ‖L∞≤1

∫
Ω
𝑢 d𝜇 − sup

𝛿∈𝒫(𝜕Ω)
∫
Ω
𝑢 d𝛿

= sup
ᵆ∈Lip(Ω)
‖∇ᵆ‖L∞≤1

∫
Ω
𝑢 d𝜇 − sup

𝑥∈𝜕Ω
|𝑢(𝑥)|

= sup
ᵆ∈Lip(Ω)
‖∇ᵆ‖L∞≤1

∫
Ω
(𝑢 − 𝑀ᵆ) d𝜇,

where we abbreviated 𝑀ᵆ ≔ sup𝑥∈𝜕Ω |𝑢(𝑥)| and used the fact that 𝜇 is a probability
measure. Substituting 𝑢 ↔ 𝑢 −𝑀ᵆ in the supremum, we get

inf
𝛿∈𝒫(𝜕Ω)

𝑊 1(𝜇, 𝛿) = sup
ᵆ∈Lip(Ω)
‖∇ᵆ‖L∞≤1
ᵆ|𝜕Ω≤0

∫
Ω
𝑢 d𝜇 = sup

ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤1

∫
Ω
𝑢 d𝜇 = 𝐽∞∗ (𝜇).

Here we used the non-negativity of 𝜇 to conclude that the constraint 𝑢|𝜕Ω ≤ 0 can be
converted to 𝑢 ∈ Lip0(Ω). □

For the interpretation of 𝐽∞∗ as a norm, we let KR(Ω) denote the KR-space, i.e., the
completion ofℳ(Ω)with respect to the norm (4.2). The dual of KR(Ω) coincides with
Lip(Ω). The space KR(𝜕Ω), being defined in an analogous manner, can be identified
with a closed subspace of KR(Ω) of measures that are zero onΩ⧵ 𝜕Ω, which allows us
to consider the quotient space

(4.6) KR𝜕(Ω) ≔ KR(Ω)/KR(𝜕Ω),

where the equivalence relation is

(4.7) 𝜇 ∼ 𝜈 ⟺ 𝜇− 𝜈 ∈ KR(𝜕Ω).

With our notation we already indicate that KR𝜕(Ω) depends only on Ω and not its
closure. The canonical norm on KR𝜕(Ω) is given by

(4.8) ‖𝜇‖KR𝜕(Ω) ≔ inf
𝜈∈KR(𝜕Ω)

‖𝜇 − 𝜈‖KR(Ω)

and we have the following result:

Proposition 4.2. The dual of KR𝜕(Ω) is given by Lip0(Ω), i.e.,

(4.9) (KR𝜕(Ω))
∗ = Lip0(Ω).

Proof. Since KR𝜕(Ω) defined in (4.6) is a quotient, its dual space coincides with the
annihilator of KR(𝜕Ω) in (KR(Ω))

∗
= Lip(Ω), which is given by Lip0(Ω). □
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Proposition 4.3. 𝐽∞∗ (𝜇) is an equivalent norm onKR𝜕(Ω). Moreover, if 𝑟Ω ≤ 1, then for
any 𝜇 ∈ ℳ(Ω) it holds that
(4.10) 𝐽∞∗ (𝜇) = ‖𝜇‖KR𝜕(Ω) .

Proof. Owing to Proposition 4.2 we can express the norm on KR𝜕(Ω) by duality as
follows

‖𝜇‖KR𝜕(Ω) = sup
ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤1
‖ᵆ‖∞≤1

∫
Ω
𝑢 d𝜇 ≤ sup

ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤1

∫
Ω
𝑢 d𝜇 = 𝐽∞∗ (𝜇).

It is obvious that for any 𝑢 ∈ Lip0(Ω) with ‖∇𝑢‖L∞ ≤ 1 it holds that ‖𝑢‖∞ ≤ 𝑟Ω. Let
𝑡 ≔ max{1, 𝑟Ω}. Then we have

𝐽∞∗ (𝜇) = sup
ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤1

∫
Ω
𝑢 d𝜇 = 𝑡 sup

ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤1

∫
Ω

1
𝑡 𝑢 d𝜇 = 𝑡 sup

ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤1
‖ᵆ‖∞≤𝑡

∫
Ω

1
𝑡 𝑢 d𝜇

= 𝑡 sup
ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤ 1

𝑡
‖ᵆ‖∞≤1

∫
Ω
𝑢 d𝜇 ≤ 𝑡 sup

ᵆ∈Lip0(Ω)
‖∇ᵆ‖L∞≤1
‖ᵆ‖∞≤1

∫
Ω
𝑢 d𝜇 = 𝑡 ‖𝜇‖KR𝜕(Ω) ,

hence the equivalence. If 𝑟Ω ≤ 1, we get that 𝑡 = 1 and
‖𝜇‖KR𝜕(Ω) = 𝐽∞∗ (𝜇),

which completes the proof. □

Remark 4.4. If 𝑟Ω ≥ 1, we can define equivalent KR norms as follows (cf. (4.2))

‖𝜇‖KR(Ω) = sup{∫
Ω
𝑢 d𝜇 ∶ 𝑢 ∈ Lip(Ω), ‖∇𝑢‖L∞ ≤ 1, ‖𝑢‖∞ ≤ 𝑟Ω} , 𝜇 ∈ ℳ(Ω),

‖𝜇‖KR(Ω) = sup{∫
Ω
𝑢 d𝜇 ∶ 𝑢 ∈ Lip(Ω), ‖∇𝑢‖L∞ ≤ 1, ‖𝑢|𝜕Ω‖∞ ≤ 1} , 𝜇 ∈ ℳ(Ω).

In both cases we get that ‖𝜇‖KR𝜕(Ω) = 𝐽∞∗ (𝜇) regardless of the value of 𝑟Ω.

Analyzing theminimizers of 𝑅∞∗ is fairly easy since they can be explicitly computed.

Proposition 4.5. The minimizers of 𝑅∞∗ are given by all nonzero multiples of 𝜇 ∈ 𝒫(Ω)
with supp(𝜇) ⊂ ℛΩ.

Proof. Since the minimization of 𝑅∞∗ given by (4.3) is homogeneous, the problem is
equivalent to the maximization of 𝐽∞∗ (𝜇) among all 𝜇 ∈ ℳ(Ω) with |𝜇| (Ω) = 1. Since
𝐽∞∗ (𝜇) ≤ 𝐽∞∗ (|𝜇|), we can further restrict ourselves to 𝜇 ∈ 𝒫(Ω). Next, for any 𝜇 ∈ 𝒫(Ω)
it holds

𝐽∞∗ (𝜇) ≤ sup{‖𝑢‖∞ ∶ 𝑢 ∈ Lip0(Ω), ‖∇𝑢‖L∞ ≤ 1} ≤ 𝑟Ω.
If additionally supp(𝜇) ⊂ ℛΩ, one obtains

𝐽∞∗ (𝜇) ≥ ∫
ℛΩ

𝑑Ω d𝜇 = 𝑟Ω,

which proves the assertion. □

It remains to deduce (1.8) from Proposition 4.5.
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Proposition 4.6. Let 𝑢 ∈ Lip0(Ω) be a minimizer of the Rayleigh quotient 𝑅∞ and let 𝜈
and 𝜏 as in Theorem 2.1 such that 𝜆∞𝜈𝑢 = −div(𝜏∇𝜏𝑢). Then the probability measure
𝜇 ≔ 𝜈 ‖𝑢‖∞ solves (1.8), i.e.,

𝜇 ∈ argmax�̃�∈𝒫(Ω) inf
𝛿∈𝒫(𝜕Ω)

𝑊 1(�̃�, 𝛿).

Proof. The measure 𝜇 ≔ 𝜈 ‖𝑢‖∞ is a probability measure and satisfies supp(𝜇) ⊂
𝜔max(𝑢) ⊂ ℛΩ. Hence, Proposition 4.5 implies that it minimizes 𝑅∞∗ which is equiva-
lent tomaximizing 𝐽∞∗ over all probabilitymeasures. The reformulation of 𝐽∞∗ in Propo-
sition 4.1 concludes the proof. □

5. Summary and outlook

In this paperwe have characterized the subdifferentials of the functionals 𝑢 ↦ ‖𝑢‖∞
and 𝑢 ↦ ‖∇𝑢‖L∞ over the Banach space C0(Ω) in order to characterize the nonlinear
eigenvalue problem associated to the Rayleigh quotient ‖∇ᵆ‖L∞

‖ᵆ‖∞
. For this we solely re-

lied on duality between continuous functions and Radon measures and utilized the
concept of tangential gradients. Our results show that general stationary points of the
Rayleigh quotient satisfy a fully nonlinear PDE in divergence form. We also studied
geometric properties of minimizers and related them to the inner distance function
and the distance function to the boundary of Ω. Finally, we showed that minimiza-
tion of the Rayleigh quotient is equivalent to an optimal transport problem involving a
generalized Kantorovich–Rubinstein norm. We derived this equivalence using a dual
Rayleigh quotient which is defined on the space of measures and whose minimizers
are subgradients of primal minimizers.
Some open questions which are subject of future work are the following ones:
First, we would like to investigate whether and how the concept of dual Rayleigh

quotients, which we have introduced in this paper, can be utilized for studying ap-
proximation with finite 𝑝. For instance, infinity ground states (1.9) arise as limit of
𝑝-Laplacian eigenfunctions for 𝑝 ∈ (1,∞) which solve

min
ᵆ∈W1,𝑝

0 (Ω)

‖∇𝑢‖L𝑝
‖𝑢‖L𝑝

or equivalently
𝜆𝑝 |𝑢|

𝑝−2 𝑢 = −Δ𝑝𝑢,
where Δ𝑝𝑢 ≔ div(|∇𝑢|𝑝−2∇𝑢). The minimization problem of the dual Rayleigh quo-
tient in this case is given by

min
𝜇∈L𝑞(Ω)

‖𝜇‖L𝑞
‖𝜇‖W−1,𝑞

0

,

where 𝑞 ∈ (1,∞) is the conjugate exponent to 𝑝 such that 1/𝑝 + 1/𝑞 = 1 and the
negative Sobolev spaceW−1,𝑞

0 is the dual ofW1,𝑝
0 . Using subdifferentials, the optimality

conditions of this minimization problem can be computed and are given by

𝜆𝑝𝜇 = −Δ𝑝(|𝜇|𝑞−2𝜇).
Indeed, this PDE can be seen to be equivalent to the 𝑝-Laplacian eigenvalue prob-
lem via the identification 𝜇 = |𝑢|𝑝−2 𝑢. Sending 𝑝 → ∞ (i.e., 𝑞 → 1) solutions
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𝜇𝑞 of this PDE should converge to a measure 𝜇 which is a subgradient of the corre-
sponding infinity ground state, i.e., 𝜇 ∈ 𝜕𝐽∞(𝑢). Correspondingly, the vector fields
|∇(||𝜇𝑞||

𝑞−2 𝜇𝑞)|𝑝−2∇(||𝜇𝑞||
𝑞−2 𝜇𝑞) should converge to a measure 𝜎which satisfies 𝜆∞𝜇 =

−div 𝜎 and has the properties of Theorem 2.1. We suppose that this limit 𝜎 admits
some minimality properties (for instance related to its support) compared to arbitrary
calibrations whose divergence is a subgradient.
Second, we would like to apply our subdifferential calculus and optimal transport

interpretation to Lipschitz extensions of a Lipschitz function 𝑔 ∶ 𝜕Ω → ℝ, i.e., solu-
tions of

(5.1) min{‖∇𝑢‖L∞ ∶ 𝑢 ∈ W1,∞(Ω), 𝑢 = 𝑔 on 𝜕Ω} .

Absolute minimizers satisfy the infinity Laplacian equation

{Δ∞𝑢 = 0, in Ω,
𝑢 = 𝑔, on 𝜕Ω.

For this equation it was already shown in [20] that the solution solves the divergence
PDE div(𝜈∇𝑢) = 0 and a similar statement for sure can be proved for general minimiz-
ers of (5.1).
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