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RIBBON CONCORDANCE OF KNOTS IS A PARTIAL ORDERING

IAN AGOL

Abstract. In this note we show that ribbon concordance forms a partial ordering on
the set of knots, answering a question of Gordon [Math. Ann. 257 (1981), pp. 157–170,
Conjecture 1.1]. The proof makes use of representation varieties of the knot groups to
𝑆𝑂(𝑁) and the subquotient relation between them induced by a ribbon concordance.

1. Introduction

Figure 1. A ribbon concordance from a knot 𝐾1 to the figure eight
knot 𝐾0

A concordance between knots 𝐾0, 𝐾1 ⊂ 𝑆3 is a smooth embedding of an annulus
𝑒 ∶ (𝑆1 × [0, 1], 𝑆1 × {0}, 𝑆1 × {1}) → (𝑆3 × [0, 1], 𝐾0 × {0}, 𝐾1 × {1}).

Wealso call the image of the annulus𝐶 = 𝑒(𝑆1×[0, 1]) ⊂ 𝑆3×[0, 1] a concordance from
𝐾1 to 𝐾0. If the projection 𝑆3 × [0, 1] → [0, 1] is a Morse function when restricted to 𝐶
with only critical points of indexes 0 and 1 (so no local maxima), then we say that𝐶 is a
ribbon concordance from𝐾1 to𝐾0 (introduced in [7]), andwewrite𝐾1 ≥ 𝐾0 in this case
(note: this is the opposite convention of [16] and subsequent papers). Projecting onto
𝑆3, one may see 𝐾1 and 𝐾0 bounding an immersed annulus 𝐶 with ribbon singularities
intersecting only 𝐾1 (see Figure 1 for an example).
The main Conjecture 1.1 of [7] states that this relation is a partial order. The ribbon

concordance relation is reflexive and transitive, so the conjecture amounts to asking if it
is antisymmetric. That is, if𝐾1 ≥ 𝐾0 and𝐾0 ≥ 𝐾1, is𝐾0 isotopic to𝐾1? Gordon answers
this conjecture for knots satisfying various hypotheses, as a special case if 𝐾0 or 𝐾1 is
fibered. Much more evidence has been amassed for this conjecture: if 𝐾0 ≥ 𝐾1 ≥ 𝐾0,
then 𝐾0 and 𝐾1 have the same S-equivalence class [6, Theorem 1.6], Seifert genus and
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knot Floer homology [16, Theorem 1.4], Khovanov homology [11, Corollary 2], and
instanton knot Floer homology [4, Corollary 4.5], [10, Theorem 7.4].
The main result of this note is to answer Gordon’s conjecture positively:

Theorem 1.1. Ribbon concordance is a partial order.
This will follow pretty immediately from the following (compare [7, Theorem 1.4]):

Theorem 1.2. Let 𝐶 be a ribbon concordance from 𝐾 to 𝐾. Then the exterior of 𝐶 is a
relative 𝑠-cobordism from the exterior of 𝐾 to itself.

In the conclusionwe point out that Theorem1.2 potentially generalizes to homology
ribbon cobordism in the sense of [4] and we consider the possibility of answering some
other questions from [7, Section 6].

2. Proof of the main theorems

Proof of Theorem 1.2. For 𝑁 > 0, let 𝑅𝑁(𝜋) be the representation variety of the group
𝜋 to 𝑆𝑂(𝑁). This is a real algebraic set (the zero-set of polynomials in ℝ𝑘 for some
𝑘) for 𝜋 finitely generated, with coordinates given by coordinates of the matrices of
the generators, and relations given by the rows of the matrices being orthogonal and
norm 1, the determinant is 1, and the entries of matrices given by the relators as prod-
ucts of the generator matrices and their inverses/transposes being 0 or 1 (depending
on whether it is off- or on-diagonal respectively) to give an identity matrix. Define
𝑅𝑁(𝑋) = 𝑅𝑁(𝜋1(𝑋)) for a connected manifold 𝑋 (we will ignore basepoints as all the
spaces are connected and different choices of basepoints will only affect maps between
representation varieties up to a change of coordinates).
We have a ribbon concordance𝐶 ⊂ 𝑆3×[0, 1] from𝐾 ⊂ 𝑆3×{1} to𝐾 ⊂ 𝑆3×{0}. Let𝑋

and 𝑋 ′ denote the exterior of 𝐾 in 𝑆3×{0} and 𝑆3×{1} respectively, and let 𝑌 denote the
exterior of 𝐶 in 𝑆3 × [0, 1]. By [7, Lemma 3.1], 𝜄 ∶ 𝜋1(𝑋 ′) → 𝜋1(𝑌) is surjective (where
themap is induced by inclusion), hence the inducedmap𝑅𝑁(𝑌) → 𝑅𝑁(𝑋 ′) is injective.
For our argument, we need to know something slightly stronger, that 𝑅𝑁(𝑌) ⊆ 𝑅𝑁(𝑋 ′)
is an algebraic subset. The point here is that since 𝜄 ∶ 𝜋1(𝑋 ′) → 𝜋1(𝑌) is surjective,
we may take a presentation 𝜋1(𝑋 ′) ≅ ⟨𝑔1, . . . , 𝑔𝑘|𝑟1, . . . , 𝑟𝑘−1⟩, and use the surjection
to get a presentation 𝜋1(𝑌) ≅ ⟨𝑔1, . . . , 𝑔𝑘|𝑟1, . . . , 𝑟𝑘+𝑛−1⟩, where 𝑟𝑘, . . . , 𝑟𝑘+𝑛−1 are the
extra 𝑛 relations that hold in 𝜋1(𝑌). Then we see that 𝑅𝑁(𝑌) is an algebraic subset of
𝑅𝑁(𝑋 ′), with coordinates given by thematrix coordinates of thematrices in 𝑆𝑂(𝑁) cor-
responding to 𝑔1, . . . , 𝑔𝑘, togetherwith relations corresponding to the relations defining
𝑆𝑂(𝑁) for eachmatrix and the relators being the identity in 𝑟1, . . . 𝑟𝑘−1 or 𝑟1, . . . , 𝑟𝑘+𝑛−1
respectively.
Also by [7, Lemma 3.1] the map 𝜋1(𝑋) → 𝜋1(𝑌) is injective. By [4, Proposition 2.1]

the induced map 𝑅𝑁(𝑌) → 𝑅𝑁(𝑋) is surjective. Both of these results follow from a
result of Gerstenhaber-Rothaus [5, Theorem 1(ii)] which allows one to extend a rep-
resentation 𝜌 ∶ 𝜋1(𝑋) → 𝑆𝑂(𝑁) to a representation 𝜌′ ∶ 𝜋1(𝑌) → 𝑆𝑂(𝑁) which
restricts to 𝜌 using the fact that 𝑌 has a handle decomposition with 𝑛 1-handles and 𝑛
2-handles added to a collar neighborhood of𝑋 , and so that the 2-handles homologically
cancel the 1-handles to obtain a homology cobordism (this is called a ribbon homol-
ogy cobordism in [4]). Note that the map 𝑅𝑁(𝑌) → 𝑅𝑁(𝑋) may be with respect to
different coordinates, since the generators of 𝜋1(𝑋)may be regarded as a subset of the
generators of 𝜋1(𝑌), and hence this polynomial map is a projection onto the subspace
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Figure 2. Composing ribbon concordances to get a self-concordance

corresponding to the generators of 𝜋1(𝑋). There is a polynomial isomorphism from
𝑅𝑁(𝑋) to 𝑅𝑁(𝑋 ′) given by (for example) a sequence of Tietze transformations. Hence
we get a surjective polynomial map 𝑅𝑁(𝑌) → 𝑅𝑁(𝑋 ′) by composing the projection
𝑅𝑁(𝑌) → 𝑅𝑁(𝑋) with the polynomial isomorphism 𝑅𝑁(𝑋) → 𝑅𝑁(𝑋 ′). We want to
show that 𝜄 ∶ 𝜋1(𝑋 ′) → 𝜋1(𝑌) is injective and hence an isomorphism.
Let 𝑐 ∈ 𝜋1(𝑋 ′) − {1}, and choose 𝑁 so that there is a representation 𝜌 ∶ 𝜋1(𝑋 ′) →

𝑆𝑂(𝑁) such that 𝜌(𝑐) ≠ 1 (using the fact that𝜋1(𝑋 ′) is residually finite, see [8, Theorem
1.1], and that any finite group 𝐺 embeds into 𝑆𝑂(𝑁) for some 𝑁). Then 𝑅𝑁(𝑌) ⊆
𝑅𝑁(𝑋 ′) is a real algebraic subset with𝑅𝑁(𝑌) ↠ 𝑅𝑁(𝑋 ′) a surjective polynomialmap by
the discussion in the previous two paragraphs. Then by Lemma A.1 𝑅𝑁(𝑌) = 𝑅𝑁(𝑋 ′).
Thus 𝜌 is the image of a representation 𝜌′ ∶ 𝜋1(𝑌) → 𝑆𝑂(𝑁). Hence 𝜌′(𝜄(𝑐)) ≠ 1, and
therefore 𝜄(𝑐) is non-trivial in 𝜋1(𝑌). Thus 𝜄 ∶ 𝜋1(𝑋 ′) → 𝜋1(𝑌) is injective, and hence
an isomorphism.
The argument finishes the same as the 4th paragraph of the argument of [7, Lemma

3.2] and the proof of [7, Theorem 1.4]. The statement is that the inclusions 𝑋 ⊂ 𝑌
and 𝑋 ′ ⊂ 𝑌 are simple homotopy equivalences, but we will only briefly summarize the
part of the argument showing that the inclusions induce isomorphisms of fundamental
groups. The map 𝜋1(𝑋) → 𝜋1(𝑌) ≅ 𝜋1(𝑋 ′) induced by the embedding 𝑋 ⊂ 𝑌 is in-
jective preserving the peripheral structure (meridian and longitude are sent to merid-
ian and longitude), and thus induces a cover 𝑋 → 𝑋 ′ by a theorem of Waldhausen
[15, Corollary 6.4] (note that there are knots such as the torus knots whose comple-
ments self-cover, but the covers do not induce an isomorphism on the peripheral sub-
group). Because the peripheral subgroup map is an isomorphism, this cover is index
1 and hence 𝜋1(𝑋) → 𝜋1(𝑌) ≅ 𝜋1(𝑋 ′) is an isomorphism preserving the peripheral
structure. The proof that 𝑌 is an s-cobordism is the same as the proof of [7, Theorem
1.4] (this is not necessary for the proof of Theorem 1.1). □

Proof of Theorem 1.1. As observed before, we only need to show that the relation is
antisymmetric.
Now, let 𝐾1 ≥ 𝐾0 by a ribbon concordance 𝐶0 and 𝐾0 ≥ 𝐾1 by a ribbon concordance

𝐶1. Concatenating the ribbon concordances, we get a ribbon concordance 𝐶 = 𝐶0𝐶1
from 𝐾0 to 𝐾0 (see Figure 2). Let 𝑌 be the exterior of 𝐶, 𝑌 𝑖 the exterior of 𝐶𝑖, 𝑋𝑖 the
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exterior of 𝐾𝑖. By Theorem 1.2, 𝜋1(𝑋0) → 𝜋1(𝑌) is an isomorphism (induced by the
embedding on the right end of the concordance). Hence the map 𝜋1(𝑋0) → 𝜋1(𝑌1)
is also an isomorphism. Now again the argument finishes the same as the 4th para-
graph of the argument of [7, Lemma 3.2] to show that 𝜋1(𝑋0) ≅ 𝜋1(𝑋1) preserving the
peripheral subgroups, and hence 𝐾0 and 𝐾1 are isotopic. □

3. Conclusion

We make some remarks on this argument and generalizations and the prospect for
addressing some Questions from [7, Section 6].
An earlier version of the proof of Theorem 1.1 used the fact that each knot group em-

beds into 𝑆𝑂(𝑁) for some𝑁 [1,14]. However, we realized that this result is overkill and
that we only needed residual finiteness. Theorem 1.1 might generalize to the setting of
ℚ-homology ribbon cobordisms to prove [4, Conjecture 1.1], generalizing [7, Conjec-
ture 1.1]. The proof that a self-homology ribbon cobordism has isomorphic fundamen-
tal group (from the right) ought to carry over, but we do not know how to show that
it is an s-cobordism (and in general it might not be). The same proof applies to knots
which are strongly homotopy-ribbon concordant in the sense of [13, Definition 1.1].
One natural question arising from the proof of Theorem 1.1 is whether one may

extract an invariant from 𝑅𝑁(𝑆3 − 𝐾) which preserves the partial order. A natural
invariant is the ordered list of dimensions of the irreducible components of 𝑅𝑁(𝑆3 −
𝐾), considered with lexicographic ordering. Then this ordering is compatible with the
partial ordering of ribbon concordance of knots and thus might give an obstruction to
ribbon concordance (but only in one direction for each𝑁 since lexicographic order is a
total order). For example, if the lexicographic ordering is reversed for two different 𝑁,
then 𝐾0 and 𝐾1 could not be related by ribbon concordance in either order. Compare
to [4, Proposition 1.18].
Another possible invariant is to consider the projection 𝐵𝑁(𝐾) = 𝑖𝑚{𝑅𝑁(𝑆3 −𝐾) →

𝑅𝑁(𝑇2)}, where 𝑇2 is the peripheral torus of 𝑆3 − 𝐾. In general 𝐵𝑁(𝐾) is only a semi-
algebraic set, but the extension lemma [4, Proposition 2.1] implies that 𝐵𝑁(𝐾0) =
𝐵𝑁(𝐶) = 𝑖𝑚{𝑅𝑁(𝑌) → 𝑅𝑁(𝑇2)}, and 𝐵𝑁(𝐶) ⊂ 𝐵𝑁(𝐾1), where 𝐶 is a ribbon concor-
dance from 𝐾1 to 𝐾0. We have preferred coordinates on 𝑅𝑁(𝑇2) given by the meridian
and longitude, hence we may consider the partial order on knots given by inclusion of
𝐵𝑁(𝐾). One may also consider this partial order for any compact connected Lie group.
Hence ribbon concordance is a partial order refining the partial orders of these periph-
eral algebraic sets. It is likely that these are hard to compute in general, so this may not
be a very practical obstruction to ribbon concordance.
One could hope to apply the proof of Theorem 1.1 to answer [7, Question 6.2]. Given

a sequence of knots 𝐾1 ≥ 𝐾2 ≥ 𝐾3 ≥ ⋯, does there exist 𝑛 so that 𝐾𝑚 = 𝐾𝑛 for
all 𝑚 ≥ 𝑛? The proof of Theorem 1.1 shows that the representation varieties 𝑅𝑁(𝐾𝑖)
must stabilize. But to prove injectivity one would need to know that there is a faithful
representation independent of 𝑁 which is not known in general. One special case that
might work is if all the 𝐾𝑖 are hyperbolic. A conjecture of Chinburg-Reid-Stover [2,
Conjecture 1.9] states that there is a curve of characters of 𝑆𝑂(3) representations lying
on the curve of characters of 𝑃𝑆𝐿2(ℂ) representations containing the discrete faithful
representation of a hyperbolic knot group. Assuming this conjecture, one would know
that each hyperbolic knot group has a faithful 𝑆𝑂(3) representation on this curve since
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there are only a countable number of non-faithful representations on this curve. Then
the proof of Theorem 1.1 considering 𝑆𝑂(3) representations would show that Question
6.2 holds for such a sequence. Also assuming [2, Conjecture 1.9], one might be able to
show that the main component of the 𝐴-polynomial of 𝐾𝑖+1 divides the 𝐴-polynomial
of 𝐾𝑖 [3], and potentially get some information about [7, Question 6.4].

Appendix A. A lemma in real algebraic geometry (by James Dix)

Here we describe the algebraic geometry needed to obtain the main result. We will
be working in the classical setting with real algebraic sets.
Only classical algebraic geometry is required to attain the result of LemmaA.1. This

result follows intuitively from the definition of Krull dimension, however an elemen-
tary proof using only the Noetherian property of real affine space is presented here.
The proof is taken from a discussion on Mathoverflow [9], and a reference for the real
algebraic geometry can be found in the appendices of [12].

LemmaA.1. Let𝑋 and 𝑌 be real algebraic sets, with 𝑌 ⊆ 𝑋 and a surjective polynomial
map 𝜙 ∶ 𝑌 ↠ 𝑋 . Then 𝑌 = 𝑋 .

Proof. Assume 𝑌 ⊊ 𝑋 . Define a sequence of algebraic sets 𝑌 𝑖 starting with 𝑌0 = 𝑌 and
with 𝑌 𝑖+1 = 𝜙−1(𝑌 𝑖). Since 𝑌 ⊊ 𝑋 and 𝜙 is surjective, 𝑌1 = 𝜙−1(𝑌)must be a proper
subset of 𝑌0. Then 𝜙|𝑌1 gives a surjection 𝑌1 ↠ 𝑌0, so by the same logic 𝑌2 ⊊ 𝑌1.
By induction, the 𝑌 𝑖 form a sequence of nested algebraic sets 𝑌0 ⊋ 𝑌1 ⊋ . . ., which

contradicts the Zariski topology onℝ𝑛 being aNoetherian topological space [12, Propo-
sition 12.3.3]. □
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