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Abstract. Resolving a conjecture of Füredi from 1988, we prove that with high prob-
ability, the random graph 𝔾(𝑛, 1/2) admits a friendly bisection of its vertex set, i.e., a
partition of its vertex set into two parts whose sizes differ by at most one in which
𝑛 − 𝑜(𝑛) vertices have more neighbours in their own part as across. Our proof is con-
structive, and in the process, we develop a new method to study stochastic processes
driven by degree information in random graphs; this involves combining enumeration
techniques with an abstract second moment argument.

1. Introduction

In a cut of a graph, i.e., a partition of its vertex set into two parts, we call a vertex
friendly if it has more neighbours in its own part than across, and unfriendly other-
wise. Questions about finding friendly and unfriendly partitions of graphs, i.e., par-
titions in which all (or almost all) the vertices are friendly or unfriendly, have been
investigated in various contexts: in combinatorics, on account of their inherent in-
terest [5, 10, 19, 26, 30, 34, 36], in computer science, as ‘local’ analogues of important
NP-complete partitioning problems [4,13], in probability and statistical physics, owing
to their connections to spin glasses [1, 18, 20, 32], and in logic and set theory [2, 31];
this list is merely a representative sample (and by no means exhaustive) since such
partitions have been studied extremely broadly. On the other hand, when it comes
to finding friendly or unfriendly bisections, i.e., partitions into two parts whose sizes
differ by at most one, much less is known. Our aim here is to prove an old and well-
known conjecture about random graphs due to Füredi [16] from 1988. This problem
has gained some notoriety over the years, in part due to its inclusion in Green’s list of
100 open problems [21, Problem 91]. Our main result is as follows.
Theorem 1.1. With high probability, an Erdős–Rényi random graph 𝐺 ∼ 𝔾(𝑛, 1/2)
admits a bisection in which 𝑛 − 𝑜(𝑛) vertices are friendly.
Background andmotivation. To place Füredi’s conjecture and its resolution here in
context, we recall some background and some simple observations. It is a classical fact
that every graph admits a partition in which every vertex is unfriendly, as evidenced
by any maximum cut. On the other hand, it is also well-known that not every graph
admits a partition in which every vertex is friendly, though a general result of Stieb-
itz [34] ensures that one can always find a partition in which every vertex is ‘almost
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friendly’, and it is easy to deduce from this that 𝔾(𝑛, 1/2) has, with high probability, a
partition into two sets of size 𝑛/2 ± 𝑜(𝑛) in which 𝑛 − 𝑜(𝑛) vertices are friendly. When
it comes to bisections, however, essentially nothing along these lines was previously
known (though, see for example [5, 10] for some interesting conjectures).
It is worth mentioning an elementary heuristic for why Theorem 1.1 should plausi-

bly hold. In a randomgraph𝔾(𝑛, 1/2), if we fix a bisection𝐴∪𝐵 and a vertex 𝑣, and con-
sider the numbers deg𝐴(𝑣) and deg𝐵(𝑣) of 𝑣’s neighbours in 𝐴 and 𝐵 respectively, then
deg𝐴(𝑣) and deg𝐵(𝑣) are independent and have essentially the same distribution (one
is distributed as Binomial(𝑛/2, 1/2), and the other as Binomial(𝑛/2 − 1, 1/2)). Thus,
the probability that a particular vertex is friendly with respect to a particular bisection
is about 1/2. For different vertices 𝑣 and 𝑤, it seems plausible that the events that 𝑣 is
friendly and that𝑤 is friendly should be positively correlated, so the probability that at
least (1−𝜀)𝑛 vertices are friendly with respect to𝐴∪𝐵 should be at least about 2−(1−𝜀)𝑛.
Since there are ( 𝑛

𝑛/2) = 2𝑛−𝑜(𝑛) choices of𝐴∪𝐵, it seems reasonable to expect that there
should be at least one bisection satisfying the conclusion of Theorem 1.1.
It seems to be very challenging to make the above line of reasoning rigorous. How-

ever, there are a few simple ways in which we can prove the following weakening of
Theorem 1.1: with high probability, 𝐺 ∼ 𝔾(𝑛, 1/2) admits a bisection 𝐴 ∪ 𝐵 in which
0.6𝑛 vertices are friendly. One such argument is as follows. It is easy to show that in a
random bisection, typically about half of the vertices in 𝐺 are friendly. For some small
constant 𝜀 > 0, we can then take the 𝜀𝑛 unfriendliest vertices on each side and swap
them, and it would appear that one can use this idea to construct a bisection where at
least say 0.6𝑛 vertices are friendly. An alternative iterative argument to establish the
same result is as follows: partition the vertices into pairs, go through the pairs one-by-
one, at each step revealing the edges between the current pair {𝑥, 𝑦} and all previous
pairs, and decide whether to put 𝑥 in 𝐴 and 𝑦 in 𝐵 or to put 𝑥 in 𝐵 and 𝑦 in 𝐴 depend-
ing on which choice would make {𝑥, 𝑦} ‘as friendly as possible’. Finally, one could also
prove such a weakened bound by considering amax-cut of the complement 𝐺 of𝐺, and
then randomly ‘rebalancing’ it into a bisection.

Degree-driven stochastic processes. Although Theorem 1.1 is specifically about
friendly bisections of random graphs, the approach we adopt to prove this result is
rather general, and it may be that the more important point of this work is its con-
tribution to methodology. Concretely, we develop a method that appears suitable for
analysing many different types of stochastic processes on random graphs driven pri-
marily by degree information; for example, the fourth and fifth authors [29] use modi-
fications of these techniques to settle various conjectures of Tran and Vu [37] concern-
ing majority dynamics on random graphs. Below, we outline how our approach allows
us to prove Theorem 1.1.
We adopt a constructive approach that yields an efficient algorithm to find the bisec-

tion promised by Theorem 1.1. To motivate our approach, it is instructive to consider
the following basic algorithm, motivated by the classical large-cut-finding algorithm:
starting with any bisection 𝐴∪𝐵 of a graph 𝐺, repeatedly check whether there are ver-
tices 𝑣 ∈ 𝐴 and 𝑤 ∈ 𝐵 such that deg𝐵(𝑣) > deg𝐴(𝑣) and deg𝐴(𝑤) > deg𝐵(𝑤), and
if so, swap 𝑣 and 𝑤. Such a swap must decrease the size (i.e., the number of crossing
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edges) of the bisection, so this algorithmmust terminate.1 Of course, if we are unlucky,
it might happen that when the algorithm terminates, all the vertices in 𝐴 are friendly,
while very few of the vertices in 𝐵 are friendly, so the resulting bisectionmay be very far
from satisfying the conclusion of Theorem 1.1. However, it seems plausible that such
an outcome is rather unusual: if 𝐺 is sampled from 𝔾(𝑛, 1/2), then one might expect
this algorithm (interpreted as a random process) to typically follow a predictable tra-
jectory, and in particular, the number of friendly vertices in 𝐴 and in 𝐵 to stay roughly
the same for most of the duration of the algorithm.
This is a promising starting point, especially due to the fact that we do not actually

need to fully understand the typical trajectory of the process. Indeed, we only need to
show that at each step 𝑘, the number of friendly vertices in 𝐴 concentrates around its
expected value. By symmetry (assuming for the moment that 𝑛 is even), the number of
friendly vertices in 𝐵 would then concentrate around that same expected value, so the
numbers of friendly vertices in𝐴 and𝐵would never get ‘too imbalanced’. However, it is
far from obvious how to actually establish concentration. Roughly speaking, the main
issue is that in order to execute even the first step of the algorithm, we have to inspect
every vertex of our graph, meaning that there is seemingly ‘no remaining randomness’
for the second step. This is in contrast with most other random graph processes in the
literature (such as 𝐻-free or 𝐻-removal processes, as in [7, 8, 15] for example), where
each individual step is defined in terms of a random choice.
There are two ideas that allow us to salvage enough randomness to establish the de-

sired concentration. First, instead of swapping vertices one at a time, we shall instead
swap a sizeable ‘batch’ of vertices between 𝐴 and 𝐵 in each step; this is strongly remi-
niscent of the influential ‘nibbling’ idea introduced by Rödl [28]. We will be able to use
discrepancy properties of random graphs to show that, in a typical outcome of the ran-
dom graph 𝔾(𝑛, 1/2), when we have a bisection 𝐴∪𝐵 in which many vertices in 𝐴 and
in 𝐵 are unfriendly, swapping a large number of the ‘unfriendliest’ vertices in 𝐴 and in
𝐵 dramatically decreases the size of the bisection. That is to say, it should only take a
few steps, (about exp(1/𝜀), in fact) to reach a bisection in which one of the two parts
has (1 − 𝜀)𝑛/2 friendly vertices. This makes the problem of establishing concentration
more tractable, since we now only need to do this for a large constant number of steps.
Our secondmain observation is that in order to execute a step of our algorithm, we only
need to know the degrees deg𝐴(𝑣) and deg𝐵(𝑣) for each vertex 𝑣 at that stage (and not
any other information about the graph). Thus, instead of revealing the whole graph
to study the first step, we may simply reveal the required degree information, mean-
ing that our random graph is now conditionally a degree-constrained random graph.
We then have the randomness of this degree-constrained random graph with which to
show concentration at the next step, for which we again only need to (dynamically)
reveal some more degree information, and so on.
The above observations leave us with the task of demonstrating concentration in

some (families of) degree-constrained random graphs. In order to study these degree-
constrained random graphs, we have at our disposal powerful enumeration theorems
due to McKay and Wormald [27], and extensions by Canfield, Greenhill, and

1Strictly speaking this is not always true, for subtle off-by-one reasons (it is true in the ‘opposite’ algorithm
where we repeatedly swap pairs 𝑣 ∈ 𝐴 and 𝑤 ∈ 𝐵 with deg𝐵(𝑣) < deg𝐴(𝑣) and deg𝐴(𝑤) < deg𝐵(𝑤), which
would be relevant if we were searching for an unfriendly bisection). This subtlety will not be relevant to the
present paper.
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McKay [12], which give very precise asymptotic formulae for the number of graphs
with specified degree information. In principle, this allows one to write down explicit
formulae for essentially all relevant probabilities, from which one could attempt to
compute the typical trajectory of the process. However, the necessary computations
are formidable, and in particular, the various densities under consideration do not ap-
pear to have closed-form expressions past the first few iterations.
Our approach to circumventing these issues brings us to the heart of the matter: we

develop an abstract second-moment argument with which one can establish concen-
tration of various statistics at a given step, using only stability and anti-concentration
information about the outcomes of previous steps. In particular, this enables us to es-
tablish concentration without actually knowing the trajectory of the process. This is
superficially reminiscent of martingale arguments establishing concentration around
themeanwithout any knowledge of the location of themean itself (see [3, Section 7.2]),
but the inputs to such arguments, typically Lipschitz-like behaviour of the randomvari-
ables of interest, are rather different from the inputs to our argument. As mentioned
earlier, the methods in our argument are quite general, and we anticipate that a broad
range of similar stochastic processes will now become amenable to analysis.

Further directions. The most obvious direction for improvement is to quantify or
remove the 𝑜(𝑛) term in Theorem 1.1. With appropriate quantification, our proof al-
lows for the 𝑜(𝑛) in Theorem 1.1 to be replaced by 𝑂(𝑛/ log log log log log 𝑛); however,
computer experiments seem to indicate that with iterative swapping processes of the
type considered in this paper, one can quite rapidly reach a partition in which only
a tiny number of vertices are unfriendly. In fact, we cannot rule out the possibility
that 𝔾(𝑛, 1/2) typically admits a bisection where all the vertices are friendly. It is not
implausible that such bisections exist, but are nonetheless computationally difficult to
find, a situation that would be somewhat reminiscent of the largest clique problem in
random graphs (see [17], for example).

Notation. Our graph-theoretic notation is for themost part standard; see [9] for terms
not defined here. In a graph 𝐺, we write deg(𝑣) for the degree of a vertex 𝑣 ∈ 𝑉(𝐺),
and 𝑁(𝑣) for its neighbourhood; also, for a subset 𝑈 ⊆ 𝑉(𝐺), we write deg𝑈(𝑣) for the
number of neighbours of 𝑣 in 𝑈, i.e., for the size of 𝑁(𝑣) ∩ 𝑈. We write 𝔾(𝑛, 𝑝) for the
Erdős–Rényi random graph on 𝑛 vertices with edge density 𝑝.
Our use of asymptotic notation is mostly standard as well. We say that an event

occurs with high probability if it holds with probability 1 − 𝑜(1) as some parameter
(usually 𝑛, unless we specify otherwise) tends to infinity. Constants suppressed by as-
ymptotic notation may be absolute, or might depend on other fixed parameters; we
shall spell out the latter situation explicitly whenever there might be cause for con-
fusion. To lighten notation, we write 𝑓 = 𝑔 ± ℎ for |𝑓 − 𝑔| ≤ ℎ. We maintain this
convention with asymptotic notation as well, so 𝑓 = 𝑔±𝑛−Ω(1) for example is taken to
mean |𝑓 − 𝑔| = 𝑛−Ω(1). We also adopt the following non-standard bit of notation: as a
parameter 𝑛 tends to infinity, we write 𝑓 ≃ ℎ if 𝑓 = (1 ± 𝑛−Ω(1))ℎ. Finally, following a
common abuse, we omit floors and ceilings wherever they are not crucial.
Finally, we write 𝐴c to denote the complement of a set 𝐴 (with respect to some

ground set that will be clear from context).
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Organisation. This paper is organised as follows. In Section 2, we describe the swap-
ping process that allows us to prove Theorem 1.1, and also give the deduction of our
main result from a few key lemmas. In Section 3, we dispose of the more routine of
these lemmas. The beef of our argument is in Section 4, where we must work rather
hard to establish the key concentration properties of our swapping process.

2. Proof overview

In this section we make some initial observations, then describe a random swap-
ping process that underlies our argument and state some facts about this process (with
proofs to follow later). We then show how to deduce Theorem 1.1 from these facts.
Given a bisection 𝐴 ∪ 𝐵 of a graph, the friendliness Δ𝐴,𝐵(𝑣) of a vertex 𝑣 is the dif-

ference between the number of its neighbours on its own side and the number of its
neighbours on the other side. We say a vertex is friendly if its friendliness is positive,
and otherwise, we say it is unfriendly. The total friendliness Δ𝐴,𝐵 of the bisection 𝐴∪𝐵
is then given by

Δ𝐴,𝐵 = ∑
𝑣∈𝑉(𝐺)

Δ𝐴,𝐵(𝑣).

We alsomake a simple observation that allows us to restrict our attention to random
graphs of even order (which in turn allows us to somewhat simplify the presentation).
A simple union bound (similar to calculations we will see in Section 3) shows that
with high probability, in any partition of the vertex set of 𝔾(𝑛, 1/2), at most 10𝑛/ log 𝑛
vertices have friendliness 1, i.e., have exactly one more neighbour on their own side
than across, or vice versa. Consequently, it clearly suffices to establish Theorem 1.1 for
𝔾(𝑛, 1/2)when 𝑛 is even; indeed, when 𝑛 is odd, wemay delete an arbitrary vertex from
the random graph, apply Theorem 1.1 to the result, and add back the deleted vertex to
either part to get the desired bisection. Therefore, all graphs under consideration will
be of even order unless explicitly specified otherwise, and we shall not belabour this
point any further.
Lemma 2.1 shows that for a typical outcome of the random graph𝔾(𝑛, 1/2), there is

a window of length 𝑂(𝑛3/2) within which the total friendliness of any bisection lies.

Lemma 2.1. There is a 𝛾 > 0 such that for a random graph 𝐺 ∼ 𝔾(𝑛, 1/2), with high
probability, every bisection 𝐴 ∪ 𝐵 of 𝐺 has |Δ𝐴,𝐵| < 𝛾𝑛3/2.

Next, we shall define a simple random ‘swap’ operation that modifies a bisection
with the aim of making it more friendly.

Definition 2.2. Given a bisection 𝐴 ∪ 𝐵 of an 𝑛-vertex graph 𝐺 and 0 < 𝛼 < 1/2, the
𝛼-swap of 𝐴∪𝐵 is the random bisection obtained by the following procedure. First, we
take the subset 𝐴′ ⊆ 𝐴 of the ⌊𝛼𝑛⌋most unfriendly vertices in 𝐴, and the subset 𝐵′ ⊆ 𝐵
of the ⌊𝛼𝑛⌋most unfriendly vertices in 𝐵 (breaking ties according to some a priori fixed
ordering of the vertex set), and swap 𝐴′ and 𝐵′. At this stage, the parts of the resulting
bisection are then (𝐴 ⧵ 𝐴′) ∪ 𝐵′ and (𝐵 ⧵ 𝐵′) ∪ 𝐴′. Next, we make a uniformly random
choice of ⌊𝛼4𝑛⌋ vertices on both of these sides, and swap these subsets.

We remark that the second (random) swap in the 𝛼-swap procedure is not actually
necessary for the proof of Theorem1.1, but the analysis later in the paperwould become
substantially more involved without it.
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Lemma 2.3 shows that in a typical outcome of the random graph𝔾(𝑛, 1/2), for every
bisection𝐴∪𝐵, either our swapping operation always increases the total friendliness by
Ω(𝑛3/2), or almost all the vertices in one of the parts (either𝐴 or 𝐵) are already friendly.
Here there are two sources of randomness (the random graph and the random swap);
we emphasise that we fix a particular outcome of the random graph, and then consider
a random swap in the setting of that particular graph.

Lemma 2.3. For every fixed 𝜀 > 0, there are 𝛼 ∈ (0, 𝜀) and 𝛽 > 0 for which a random
graph 𝐺 ∼ 𝔾(𝑛, 1/2) has, with high probability, the following property. In any bisection
𝐴 ∪ 𝐵 of 𝐺 in which at least 𝜀𝑛 vertices are unfriendly in each of 𝐴 and 𝐵, the random
bisection 𝐴1 ∪ 𝐵1 obtained from an 𝛼-swap of 𝐴 ∪ 𝐵 always satisfies

Δ𝐴1,𝐵1 ≥ Δ𝐴,𝐵 + 𝛽𝑛3/2.

Finally, Lemma 2.4 establishes concentration properties for bisections obtained by
iterating our swapping operation.

Lemma 2.4. Fix 𝜀 > 𝛼 > 0, 𝑘 ∈ ℕ, and an arbitrary bisection 𝐴 ∪ 𝐵 of the vertex set of
𝔾(𝑛, 1/2). For a random graph 𝐺 ∼ 𝔾(𝑛, 1/2), let 𝐴𝑘 ∪ 𝐵𝑘 be the bisection obtained by
performing 𝑘 iterations of the 𝛼-swap procedure starting from 𝐴 ∪ 𝐵. Writing 𝑋 and 𝑌
respectively for the number of unfriendly vertices in 𝐴𝑘 and 𝐵𝑘, we have with high proba-
bility that |𝑋 − 𝑌| = 𝑜(𝑛).

With these facts in hand, we may now easily deduce Theorem 1.1.

Proof of Theorem 1.1. For any fixed 𝜀 > 0, we shall show that 𝐺 ∼ 𝔾(𝑛, 1/2) with high
probability has a bisection in which at most 2𝜀𝑛 + 𝑜(𝑛) vertices are unfriendly.
Say 𝑉(𝐺) = {1, . . . , 𝑛}, define the bisection 𝐴0 ∪ 𝐵0 by 𝐴0 = {1, . . . , 𝑛/2} and 𝐵0 =

{𝑛/2 + 1, . . . , 𝑛}. Let 𝛾 be as in Lemma 2.1 and 𝛽 as in Lemma 2.3 applied to 𝜀. Set
𝐾 = ⌈2𝛾/𝛽⌉ + 1, and let

𝐴1 ∪ 𝐵1, 𝐴2 ∪ 𝐵2, . . . , 𝐴𝐾 ∪ 𝐵𝐾
be the sequence of bisections arising from𝐾 iterations of the 𝛼-swap procedure starting
from 𝐴0 ∪ 𝐵0.
Say that a bisection 𝐴 ∪ 𝐵 is 𝜀-good if there are at most 𝜀𝑛 unfriendly vertices in 𝐴

or at most 𝜀𝑛 unfriendly vertices in 𝐵. Now, the following properties hold with high
probability, by Lemmas 2.1, 2.3 and 2.4.

(1) There is an interval of length at most 2𝛾𝑛3/2 such that the total friendliness of
every bisection of 𝐺 lies in this interval.

(2) For every 0 ≤ 𝑘 ≤ 𝐾−1, either𝐴𝑘∪𝐵𝑘 is 𝜀-good, orΔ𝐴𝑘+1,𝐵𝑘+1 ≥ Δ𝐴𝑘,𝐵𝑘+𝛽𝑛3/2.
(3) For every 1 ≤ 𝑘 ≤ 𝐾, the numbers of unfriendly vertices in 𝐴𝑘 and in 𝐵𝑘 differ

by 𝑜(𝑛).
Fix outcomes of 𝐺 and 𝐴1 ∪ 𝐵1, 𝐴2 ∪ 𝐵2, . . . , 𝐴𝐾 ∪ 𝐵𝐾 satisfying all these properties.

Now, by property (1), it is not possible for the total friendliness to increase by 𝛽𝑛3/2 in
each of the 𝐾 iterations. So, by property (2), there must be some 𝑘 for which 𝐴𝑘 ∪ 𝐵𝑘
is 𝜀-good, meaning that there are at most 𝜀𝑛 unfriendly vertices in 𝐴𝑘 or at most 𝜀𝑛
unfriendly vertices in 𝐵𝑘. The third property (3) now ensures that there are at most
2𝜀𝑛 + 𝑜(𝑛) unfriendly vertices in total at this stage. The bisection 𝐴𝑘 ∪ 𝐵𝑘 has the
properties we desire, proving the result. □
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2.1. Overview of the proofs of the key lemmas. We now briefly discuss the proofs
of Lemmas 2.1, 2.3 and 2.4. First, Lemma 2.1 is proved via a Chernoff bound and a
simple union bound over all possible bisections. Second, Lemma 2.3 is also proved by
a union bound: we show that that no bisection of the graph has many vertices with
friendliness very close to zero, so that there is always some reasonably large gain from
swapping unfriendly vertices; here, one must also control the (small) amount of addi-
tional unfriendliness potentially introduced between pairs of swapped vertices.
The proof of Lemma 2.4 is by far themost technical ingredient in the proof. At a high

level, one runs the iterated swap algorithm on a random graph 𝐺 ∼ 𝔾(𝑛, 1/2), at each
step revealing only that information about𝐺 (namely, degrees into certain parts) which
is necessary to determine the outcome of the 𝛼-swap procedure. So, at every step, we
need to study a degree-constrained random graph model; this is accomplished using
graph enumeration techniques in the style of McKay–Wormald [27]. One can track the
fraction of vertices that live in prescribed parts at prescribed times inductively, showing
via the second moment method in our degree-constrained random graph model that
the numbers of different types of vertices are concentrated. However, several obstacles
arise naturally due to the presence of complicated conditional distributions, and the
need for all of the different ‘well-conditioned’ degree-constrained models (based on
different revelations) to converge to a single distribution of degrees. The totality of
what must be tracked to implement this argument is contained in Proposition 4.3.
In particular, we note that the first part of the proof (Lemmas 2.1 and 2.3) and the

second part of the proof (Lemma 2.4) are essentially logically independent, and the
analysis here can be extended to a variety of similar algorithms based on degree se-
quences. One can think of the first part as providing a monovariant to the graph pro-
cess analysed in the second part, guaranteeing that the graph partition ‘gets better’
over time and converges to a friendly distribution of degrees rather than to an abstract
(iterated) optimiser of some associated variational problem.

3. Swapping decrement

In this section we prove Lemmas 2.1 and 2.3. To start with, we need some simple
facts about centered binomial distributions. The first is a Chernoff bound (see [22,
Theorem2.1], for example) and the second follows fromeither Stirling’s approximation
or the Erdős–Littlewood–Offord theorem (see [35, Corollary 7.4]).

Theorem 3.1. For𝑁 ∈ ℕ, let 𝑋1, . . . , 𝑋𝑁 be independent Rademacher random variables
(satisfying ℙ(𝑋𝑖 = 1) = ℙ(𝑋𝑖 = −1) = 1/2), and let 𝑋 = 𝑋1 +⋯+ 𝑋𝑁 .

(1) For all 𝑡 ≥ 0, we have ℙ(|𝑋| ≥ 𝑡) ≤ 2𝑒−𝑡2/(2𝑁).
(2) For all 𝑡 ≥ 1 and all 𝑥 ∈ ℝ, we have ℙ(|𝑋 − 𝑥| ≤ 𝑡) ≤ √2𝑡/√𝑁.

The proof of Lemma 2.1 is extremely simple, being a routine application of the union
bound.

Proof of Lemma 2.1. There are ( 𝑛
𝑛/2) ≤ 2𝑛 bisections in total. For each such bisection

𝐴 ∪ 𝐵, we claim that Δ𝐴,𝐵 + 𝑛/2 has a centered binomial distribution to which Theo-
rem 3.1 applies (with 𝑁 = (𝑛2)). Indeed, for each pair of distinct vertices 𝑒 = {𝑥, 𝑦}, let
𝑌𝑒 = 1 if 𝑒 is an edge in 𝐺, and 𝑌𝑒 = −1 if 𝑒 is not an edge in 𝐺. Then, let 𝑋𝑒 = 𝑌𝑒 if
𝑒 ⊂ 𝐴 or 𝑒 ⊂ 𝐵, and 𝑋𝑒 = −𝑌𝑒 otherwise, and note that Δ𝐴,𝐵 + 𝑛/2 = ∑𝑒 𝑋𝑒.
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So, for sufficiently large 𝛾, Theorem 3.1(1) yields

ℙ (|Δ𝐴,𝐵| ≥ 𝛾𝑛3/2) ≤ 2 exp(−(𝛾𝑛
3/2 − 𝑛/2)2
2(𝑛2)

) = 𝑜(2−𝑛),

so the desired result follows from the union bound. □

Lemma 2.3 is also proved by the union bound, but for this, wewill first need to prove
some auxiliary lemmas.

Lemma 3.2. For any 𝜂 ∈ (0, 1/4), a random graph 𝐺 ∼ 𝔾(𝑛, 1/2) with high probability
has the property that for every bisection 𝐴 ∪ 𝐵 of 𝐺, we have |Δ𝐴,𝐵(𝑣)| ≥ 4−1/𝜂√𝑛 for all
but at most 𝜂𝑛 vertices 𝑣 ∈ 𝐴, and for all but at most 𝜂𝑛 vertices 𝑣 ∈ 𝐵.

Proof. For each bisection 𝐴 ∪ 𝐵, if we condition on an outcome of 𝐺[𝐴], then the ran-
dom variables {Δ𝐴,𝐵(𝑣) ∶ 𝑣 ∈ 𝐴} become mutually independent. Conditionally, for
each 𝑣 ∈ 𝐴, the random variable 2(deg𝐵(𝑣) − 𝑛/4) = 2(−Δ𝐴,𝐵(𝑣) + deg𝐴(𝑣) − 𝑛/4) has
a centered binomial distribution towhich Theorem3.1 applies (with𝑁 = 𝑛). Therefore
by Theorem 3.1(2),

ℙ (|Δ𝐴,𝐵(𝑣)| ≤ 4−1/𝜂√𝑛) ≤ (2√2 ⋅ 4−1/𝜂√𝑛)/√𝑛 − 1 ≤ 4 ⋅ 4−1/𝜂

for large 𝑛. It follows that the probability that the property in the statement of the
lemma does not hold is at most

2 ⋅ 2𝑛(𝑛/2𝜂𝑛 )(4 ⋅ 4
−1/𝜂)𝜂𝑛 ≤ 23𝑛/2+2𝜂𝑛4−𝑛 = 𝑜(1). □

Lemma 3.3. For any sufficiently small fixed 𝛼 > 0, a random graph 𝐺 ∼ 𝔾(𝑛, 1/2)
with high probability has the property that for every bisection 𝐴 ∪ 𝐵 of 𝐺 and every pair
of subsets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 each of size 𝛼𝑛, we have

|Δ𝐴′,𝐵′ | ≤ 𝛼4/3𝑛3/2,

where we view 𝐴′ ∪ 𝐵′ as a bisection of the induced subgraph 𝐺[𝐴′ ∪ 𝐵′].

Proof. Note that the event does not depend on 𝐴, 𝐵, only on 𝐴′, 𝐵′. For subsets 𝐴′ and
𝐵′ as in the statement of the lemma, the random variable Δ𝐴′,𝐵′ + 𝛼𝑛 has a centered
binomial distribution to which Theorem 3.1 applies (with 𝑁 = (2𝛼𝑛2 )). We then have

ℙ (|Δ𝐴′,𝐵′ | ≥ 𝛼4/3𝑛3/2) ≤ 2 exp(−(𝛼
4/3𝑛3/2 − 𝛼𝑛)2
2(2𝛼𝑛2 )

) ≤ 2 exp(−𝛼2/3𝑛/8) = 𝑜 (( 𝑛𝛼𝑛)
−2

) ,

where in the second inequality we have used that 𝑛 is sufficiently large with respect
to 𝛼 and in the final inequality we have used that ( 𝑛𝛼𝑛) ≤ (𝑒/𝛼)𝛼𝑛. The desired result
follows from a union bound over all choices of 𝐴′ and 𝐵′. □

Lemma 3.4. For any sufficiently small fixed 𝛿 > 0, a random graph 𝐺 ∼ 𝔾(𝑛, 1/2) with
high probability has the following property. For every bisection 𝐴 ∪ 𝐵, and every pair of
subsets 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵 each of size 𝛿𝑛, if we swap 𝐴′ and 𝐵′ to obtain a bisection 𝐴1 ∪ 𝐵1
with 𝐴1 = (𝐴 ⧵ 𝐴′) ∪ 𝐵′ and 𝐵1 = (𝐵 ⧵ 𝐵′) ∪ 𝐴′, then we have

|Δ𝐴1,𝐵1 − Δ𝐴,𝐵| ≤ 𝛿1/3𝑛3/2.
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Proof. For each bisection 𝐴 ∪ 𝐵 and subsets 𝐴′ and 𝐵′ as in the lemma statement, the
random variable Δ𝐴1,𝐵1 − Δ𝐴,𝐵 has a centered binomial distribution to which Theo-
rem 3.1 applies (with 𝑁 = 4(𝑛/2 − 𝛿𝑛)𝛿𝑛). We then have

ℙ (|Δ𝐴1,𝐵1 − Δ𝐴,𝐵| ≥ 𝛿1/3𝑛3/2) ≤ 2 exp(− (𝛿1/3𝑛3/2)2
4(𝑛/2 − 𝛿𝑛)𝛿𝑛) = 𝑜 (2−𝑛(𝑛/2𝛿𝑛 )

−2

) ,

so the desired result follows once again from the union bound. □

We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3. Let 𝜂 < 𝜀/2 be small enough for Lemma 3.2 to hold. Let 𝛼 ∈
(0, 𝜀/2) be small enough so that Lemma 3.3 holds and Lemma 3.4 holds for 𝛿 = 𝛼4, and
also 𝛼 ≤ 4−3/𝜂. Now assume that the properties in Lemmas 3.2 to 3.4 all hold for 𝐺
with these parameters, which occurs with high probability.
Now, consider an arbitrary bisection 𝐴 ∪ 𝐵 where at least 𝜀𝑛 vertices in 𝐴 are un-

friendly and at least 𝜀𝑛 vertices in 𝐵 are unfriendly. Let 𝐴′ be the subset of the 𝛼𝑛most
unfriendly vertices in𝐴, and let 𝐵′ ⊆ 𝐵 be the subset of the 𝛼𝑛most unfriendly vertices
in 𝐵. By assumption, at least 𝜀𝑛 vertices in 𝐴 are unfriendly, so at least (𝜀 − 𝛼)𝑛 ≥ 𝜂𝑛
vertices in 𝐴 are unfriendly but not as unfriendly as the vertices in 𝐴′. By Lemma 3.2
we deduce that for all 𝑣 ∈ 𝐴′ we have Δ𝐴,𝐵(𝑣) ≤ −4−1/𝜂√𝑛. Similarly, for all 𝑣 ∈ 𝐵′
we have Δ𝐴,𝐵(𝑣) ≤ −4−1/𝜂√𝑛.
Next, let 𝐴″ = (𝐴 ⧵ 𝐴′) ∪ 𝐵′ and 𝐵″ = (𝐵 ⧵ 𝐵′) ∪ 𝐴′ be the parts resulting from the

first step in an 𝛼-swap. We know that |Δ𝐴′,𝐵′ | ≤ 𝛼4/3𝑛3/2 by Lemma 3.3, so we have
Δ𝐴″,𝐵″ = Δ𝐴,𝐵 − 4 ∑

𝑣∈𝐴′∪𝐵′
Δ𝐴,𝐵(𝑣) + 4Δ𝐴′,𝐵′

≥ Δ𝐴,𝐵 + 4(2𝛼𝑛)(4−1/𝜂√𝑛) − 4𝛼4/3𝑛3/2 ≥ Δ𝐴,𝐵 + 4𝛼4−1/𝜂𝑛3/2.
Finally, by the guarantee in Lemma 3.4, we note that the final random swap in the
definition of the 𝛼-swap procedure changes the friendliness of the bisection 𝐴″ ∪𝐵″ by
at most

𝛿1/3𝑛3/2 = 𝛼4/3𝑛3/2 ≤ 𝛼4−1/𝜂𝑛3/2
in passing to the final bisection 𝐴1 ∪ 𝐵1. It follows that we have the desired result with
𝛽 = 3𝛼4−1/𝜂. □

4. Concentration of the iterated swapping process

In this section we prove Lemma 2.4. In fact, it will follow from the more technical
Proposition 4.3, which we shall shortly state and prove by induction. To get started, we
need some definitions.
First, we introduce some notation to handle empirical distributions. Given a se-

quence (𝑎𝑖 ∶ 𝑖 ∈ 𝐼), the uniform measure ℒ̂ on this sequence is the probability distri-
bution of 𝑎𝑗 where 𝑗 is chosen uniformly from 𝐼. When the sequence (𝑎𝑖 ∶ 𝑖 ∈ 𝐼) is
itself random — for example, comprised of jointly random vectors — we emphasise
that the associated uniformmeasure ℒ̂ is itself a random object, i.e., each realisation of
the random sequence (𝑎𝑖 ∶ 𝑖 ∈ 𝐼) gives rise to an associated uniform measure on this
realisation.
We now define some empirical degree distributions associated with our iterated

swapping process.



FRIENDLY BISECTIONS OF RANDOM GRAPHS 389

Definition 4.1. Given a graph 𝐺 on the vertex set {1, . . . , 𝑛}, we consider the iterated
swapping process in which we start with the bisection 𝐴0∪𝐵0, where 𝐴0 = {1, . . . , 𝑛/2}
and 𝐵0 = {𝑛/2 + 1, . . . , 𝑛}, and perform 𝑘 repeated 𝛼-swaps to yield a sequence (𝐴𝑡 ∪
𝐵𝑡)𝑘𝑡=0 of bisections. For a binary sequence 𝑥 = (𝑥𝑡)𝑘+1𝑡=1 ∈ {0, 1}𝑘+1, let 𝑉𝑥 be the set of
vertices that are in part 𝐴𝑡 at those times 𝑡 with 𝑥𝑡−1 = 0, and in part 𝐵𝑡 at those times
𝑡 with 𝑥𝑡−1 = 1 for 1 ≤ 𝑡 ≤ 𝑘 + 1. For a binary sequence 𝑥 ∈ {0, 1}𝑘+1, let ℒ̂𝑥 be the
uniform measure on the sequence of degree vectors

(((deg𝑉𝑦(𝑣) − |𝑉𝑦|/2)/√𝑛)𝑦∈{0,1}𝑘+1 ∶ 𝑣 ∈ 𝑉𝑥) .

Next, we recall the definition of multidimensional Kolmogorov distance on ℝ𝑑.

Definition 4.2. Let ℒ and ℒ′ be probability distributions on ℝ𝑑. We define the Kol-
mogorov distance dK(ℒ,ℒ′) between ℒ and ℒ′ to be the supremum of |ℒ(𝐴) − ℒ′(𝐴)|
over all sets 𝐴 of the form (−∞, 𝑎1] ×⋯ × (−∞, 𝑎𝑑], where 𝑎1, . . . , 𝑎𝑑 ∈ ℝ.

Note that the Kolmogorov distance controls the probability of lying in any half-open
box: indeed, for any such box 𝐵 = (𝑏1, 𝑐1] × ⋯ × (𝑏𝑑, 𝑐𝑑], we can use the inclusion-
exclusion principle to express ℒ(𝐵) as a signed sum of 2𝑑 probabilities of the form
ℒ((−∞, 𝑎1] ×⋯ × (−∞, 𝑎𝑑]), so |ℒ(𝐵) − ℒ′(𝐵)| ≤ 2𝑑 dK(ℒ,ℒ′).
The promised generalisation of Lemma 2.4 is now as follows.

Proposition 4.3. Fix 𝛼 ∈ (0, 1/4) and 𝑘 ∈ ℕ. There are 𝑐𝛼,𝑘, 𝐶𝛼,𝑘 > 0 such that for each
𝑥 ∈ {0, 1}𝑘+1 there are

(1) a 2𝑘+1-dimensional probability distributionℒ𝑥 (i.e., a probability distribution on
ℝ2𝑘+1), and

(2) a real number 𝜋𝑥 ≥ 𝛼4𝑘/2,
both of which may depend on 𝛼 and 𝑛, such that the following holds. For 𝐺 ∼ 𝔾(𝑛, 1/2),
consider a sequence of 𝑘 iterated 𝛼-swaps, and for 𝑥 ∈ {0, 1}𝑘+1, let 𝑉𝑥 and ℒ̂𝑥 be as in
Definition 4.1. Then, with high probability, all of the following hold.
(A1) For each 𝑥 ∈ {0, 1}𝑘+1, we have

|||𝑉𝑥| − 𝜋𝑥𝑛|| ≤ 𝑛1−𝑐𝛼,𝑘 .

(A2) For each 𝑥 ∈ {0, 1}𝑘+1, we have

dK(ℒ̂𝑥, ℒ𝑥) ≤ 𝑛−𝑐𝛼,𝑘 .

(A3) For each vertex 𝑣 ∈ 𝑉(𝐺) and each 𝑥 ∈ {0, 1}𝑘+1, we have
||deg𝑉𝑥(𝑣) − |𝑉𝑥|/2|| < 𝐶𝛼,𝑘√𝑛 log 𝑛.

(A4) For each 𝑥 ∈ {0, 1}𝑘+1, and each box 𝐵 = ∏𝑦∈{0,1}𝑘+1(𝑎𝑦, 𝑏𝑦] with side lengths
𝑏𝑦 − 𝑎𝑦 = 𝑛−𝑐𝛼,𝑘 (and, therefore, vol(𝐵) = (𝑛−𝑐𝛼,𝑘)2𝑘+1) we have

ℒ𝑥(𝐵) ≤ vol(𝐵) exp(𝐶𝛼,𝑘√log 𝑛).

Again, we emphasise that we treat 𝛼 and 𝑘 as fixed constants for the purpose of the
‘with high probability’ statement in Proposition 4.3; in particular, Proposition 4.3 only
holds if 𝑛 grows sufficiently fast (with respect to 𝛼 and 𝑘).
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Before discussing the proof of Proposition 4.3, we explain how it implies Lemma 2.4.
The key observation is that (A1) to (A4) essentially allow us to read off, from the distri-
butions ℒ𝑥, arbitrary information about degree statistics (and, in particular, the num-
ber of friendly vertices in each part). Lemma 4.4 will be used for this purpose: we can
estimate the probabilitymass in a half-space by approximating that half-space by boxes
and using (A2) to (A4).

Lemma 4.4. Suppose that𝐺 is such that (A2) to (A4) are satisfied, and let𝐻 ⊆ ℝ{0,1}𝑘+1

be any closed half-space (i.e., a region bounded by a hyperplane). Then for any 𝑥 ∈
{0, 1}𝑘+1, we have ℒ̂𝑥(𝐻) = ℒ𝑥(𝐻) + 𝑜(1).

We defer the proof of Lemma 4.4 (in a slightly stronger form, see Lemma 4.6) to
Section 4.2; we now deduce Lemma 2.4 from Proposition 4.3 and Lemma 4.4.

Proof of Lemma 2.4. Let 𝐴𝑘 ∪ 𝐵𝑘 be the bisection resulting from 𝑘 iterations of the 𝛼-
swap process. Recall that in the statement of Lemma 2.4, the random variables 𝑋 and
𝑌 are the numbers of unfriendly vertices in 𝐴𝑘 and 𝐵𝑘. It suffices to prove that there is
some value𝑁 (potentially depending on all of 𝛼, 𝑘, 𝑛) such that 𝑋 = 𝑁+𝑜(𝑛)with high
probability. Indeed, by the symmetry of the process with respect to 𝐴 and 𝐵, it would
follow that 𝑌 = 𝑁 + 𝑜(𝑛) with high probability as well, implying that |𝑋 − 𝑌| = 𝑜(𝑛)
with high probability, as desired.
To this end, for 𝑖 ∈ {0, 1}, let 𝑆 𝑖 = {𝑥 ∈ {0, 1}𝑘+1 ∶ 𝑥𝑘+1 = 𝑖} and note that a vertex

𝑣 ∈ 𝐴𝑘 is unfriendly if and only if

∑
𝑦∈𝑆0

deg𝑉𝑦(𝑣)− ∑
𝑦∈𝑆1

deg𝑉𝑦(𝑣) = ∑
𝑦∈𝑆0

(deg𝑉𝑦(𝑣) − |𝑉𝑦|/2)− ∑
𝑦∈𝑆1

(deg𝑉𝑦(𝑣) − |𝑉𝑦|/2) ≤ 0.

So, defining the affine half-space

𝐻 = {𝑑 ∈ ℝ{0,1}𝑘+1 ∶ ∑
𝑦∈𝑆0

𝑑𝑦 − ∑
𝑦∈𝑆1

𝑑𝑦 ≤ 0} ,

we have 𝑋 = ∑𝑥∈𝑆0 |𝑉𝑥|ℒ̂𝑥(𝐻). By Proposition 4.3 and Lemma 4.4, with high probabil-
ity we have 𝑋 = 𝑛∑𝑥∈𝑆0 𝜋𝑥ℒ𝑥(𝐻) + 𝑜(𝑛), as desired. □

Wewill prove Proposition 4.3 by induction on 𝑘. In its full generality, our argument
will rely on a secondmoment computation that utilises results ofMcKay–Wormald [27]
and Canfield–Greenhill–McKay [12] about enumerating graphs with specified vertex-
degrees. Since the argument is rather technical, we shall proceed slowly, first illustrat-
ing the base case before jumping into the meat of the argument.

4.1. The base case. In this subsectionwe prove Proposition 4.3 for 𝑘 = 0. This entails
some explicit calculations in the randomgraph𝔾(𝑛, 1/2); the inductive step can be seen
as a ‘relativised’ version of this argument, with the randomness coming from a well-
conditioned random graph with specified degree information rather than 𝔾(𝑛, 1/2).
Recall that we need to prove that the four properties in (A1) to (A4) each hold with

high probability. The most interesting of these properties is (A2), which will be estab-
lished using Lemma 4.5.

Lemma 4.5. Fix 𝑐 ∈ (0, 1) and 𝑑 ∈ ℕ. Let ( ⃗𝑑(𝑣))𝑣∈𝑉 be a sequence of 𝑛 discrete jointly
random vectors in ℝ𝑑, and let ℒ be the (fixed) distribution on ℝ𝑑 defined by choosing
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𝑣 uniformly at random from 𝑉 and then sampling from ⃗𝑑(𝑣). Suppose that for a box
𝑄 = (−𝑞, 𝑞]𝑑 with 𝑞 ≥ 1, the following conditions hold:

(1) for each ⃗𝑠, ⃗𝑡 ∈ 𝑄 and each pair of distinct 𝑢, 𝑣 ∈ 𝑉 , we have

ℙ( ⃗𝑑(𝑢) = ⃗𝑡 and ⃗𝑑(𝑣) = ⃗𝑠) = (1 ± 𝑛−𝑐)ℙ( ⃗𝑑(𝑢) = ⃗𝑡)ℙ( ⃗𝑑(𝑣) = ⃗𝑠),
(2) ℒ(𝑄c) ≤ 𝑛−𝑐, and
(3) for each box 𝐵 ⊆ 𝑄 with side lengths at least 𝑛−𝑐, we have ℒ(𝐵) ≤ 𝑞 vol(𝐵).

For a given realisation of the random sequence ( ⃗𝑑(𝑣))𝑣∈𝑉 , let ℒ̂ be the (random) distri-
bution on ℝ𝑑 which is the uniform measure on this realisation. With probability at least
1 − 𝑂(𝑞𝑑𝑛−𝑐/8) over the randomness of ( ⃗𝑑(𝑣))𝑣∈𝑉 , we have dK(ℒ, ℒ̂) = 𝑂(𝑞𝑑𝑛−𝑐/(8𝑑)).

In applications, ⃗𝑑(𝑣) will be a list of degrees from 𝑣 to a number of other fixed sub-
sets, and ( ⃗𝑑(𝑣))𝑣∈𝑉 will be the random ensemble of these lists. Lemma 4.5 roughly
states that given decorrelation between these degree statistics, and (for technical rea-
sons) a tail bound and anti-concentration, the empirical degree distribution of𝑉 is very
likely to concentrate around an explicit distribution.
Here, we again reiterate that the constants suppressed by the asymptotic notation

in Lemma 4.5 are allowed to depend on the fixed parameters 𝑐 and 𝑑.

Proof of Lemma 4.5. For any 𝑣 ∈ 𝑉 , and any box 𝐵, let ℰ𝑣,𝐵 be the event that ⃗𝑑(𝑣) lies
in 𝐵, so that 𝑛ℒ̂(𝐵) is the number of 𝑣 ∈ 𝑉 such that ℰ𝑣,𝐵 holds. For 𝑢, 𝑣 ∈ 𝑉 and boxes
𝐵, 𝐵′ ⊆ 𝑄, we can sum the bound in (1) over all the points ⃗𝑡 ∈ 𝐵 and ⃗𝑠 ∈ 𝐵′ to see that

ℙ(ℰᵆ,𝐵 ∩ ℰ𝑣,𝐵′) = ℙ(ℰᵆ,𝐵)ℙ(ℰ𝑣,𝐵′) ± 𝑛−𝑐.

It follows that Var(𝑛ℒ̂(𝐵)) ≤ 𝑛 + 𝑛2−𝑐 ≤ 2𝑛2−𝑐, so by Chebyshev’s inequality, with
probability at least 1 − 𝑛−𝑐/2, we have
(4.1) ||ℒ̂(𝐵) − 𝔼[ℒ̂(𝐵)]|| = ||ℒ̂(𝐵) − ℒ(𝐵)|| ≤ 2𝑛−𝑐/4.

Now, consider a family 𝔅 of 𝑂(𝑛𝑐/8𝑞𝑑) half-open boxes with side lengths at most 𝐷 =
𝑛−𝑐/(8𝑑) that partition the (big) box 𝑄. By the union bound, with probability
1 − 𝑂(𝑞𝑑𝑛−𝑐/8), the bound (4.1) holds for all 𝐵 ∈ 𝔅. Also, since 𝔼[ℒ̂(𝑄c)] = ℒ(𝑄c) ≤
𝑛−𝑐, by Markov’s inequality we have ℒ̂(𝑄c) ≤ 𝑛−𝑐/2 with probability at least 1 − 𝑛−𝑐/2.
Now, it is a routine matter to deduce the desired conclusion from these two facts. The
details are as follows.
For any semi-infinite box 𝐴 = (−∞, 𝑎1] ×⋯× (−∞, 𝑎𝑑], we can find subcollections

𝔅−, 𝔅+ ⊆ 𝔅 such that

⋃
𝐵∈𝔅−

𝐵 ⊆ 𝐴 ∩ 𝑄 ⊆ ⋃
𝐵∈𝔅+

𝐵,

and |𝔅+ ⧵ 𝔅−| = 𝑂((𝑞/𝐷)𝑑−1). Then
∑

𝐵∈𝔅−
ℒ̂(𝐵) ≤ ℒ̂(𝐴 ∩ 𝑄) ≤ ∑

𝐵∈𝔅+
ℒ̂(𝐵).

Furthermore, using (3) and (4.1) for all 𝐵 ∈ 𝔅, we see that both the sum∑𝐵∈𝔅− ℒ̂(𝐵)
and the sum∑𝐵∈𝔅+ ℒ̂(𝐵) differ from ℒ(𝐴 ∩ 𝑄) by at most

𝑂 (|𝔅+ ⧵ 𝔅−|(𝑞𝐷𝑑) + |𝔅|(2𝑛−𝑐/4)) = 𝑂 (𝑞𝑑𝑛−𝑐/(8𝑑)) .
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So, we have, with probability 1 − 𝑂(𝑞𝑑𝑛−𝑐/8),
||ℒ(𝐴) − ℒ̂(𝐴)|| = 𝑂 (ℒ(𝑄c) + ℒ̂(𝑄c) + 𝑞𝑑𝑛−𝑐/(8𝑑)) = 𝑂 (𝑞𝑑𝑛−𝑐/(8𝑑)) ,

proving the lemma. □

Now we use Lemma 4.5 to prove the base case of Proposition 4.3.

Proof of the 𝑘 = 0 case of Proposition 4.3. First, we have |𝑉0| = |𝐴0| = |𝑉1| = |𝐵0| =
𝑛/2, proving (A1). Furthermore, for a sufficiently large 𝐶𝛼,𝑘 > 0, given a vertex 𝑣, we
have |deg𝑉𝑖 (𝑣) − 𝑛/4| < 𝐶𝛼,𝑘𝑛1/2√log 𝑛 with probability at least 1 − 1/𝑛2, say, just by
the Chernoff bound, whence a union bound demonstrates (A3).
It remains to prove (A2) and (A4). It is enough to prove them for 𝑥 = (0), by

symmetry. We will take ℒ0 to be the distribution of the random vector

⃗𝑑(𝑣) = (|deg𝑉0(𝑣) − 𝑛/4|/√𝑛, |deg𝑉1(𝑣) − 𝑛/4|/√𝑛) ,

where 𝑣 ∈ 𝑉0 is arbitrary; clearly, this distribution does not actually depend on the
specific choice of 𝑣 ∈ 𝑉0. Then, ℒ0 has a simple description in terms of independent
binomial distributions. Although it will not be necessary for the proof, we remark
that ℒ0 is well-approximated by the bivariate normal distribution 𝑁(0, 1/2)2, and it is
possible to take ℒ0 to be this distribution as well.
Before proceeding further, we note that the aforementioned Chernoff bound shows

that with 𝑄 = (−𝐶𝛼,𝑘√log 𝑛, 𝐶𝛼,𝑘√log 𝑛]2, we have ℒ0(𝑄c) ≤ 2/𝑛2. Now, for every
individual point ⃗𝑑 ∈ ℝ2, we have ℒ0({ ⃗𝑑}) = 𝑂((1/√𝑛)2) = 𝑂(1/𝑛) (by the Erdős–
Littlewood–Offord theorem applied to each coordinate, say). Sinceℒ0 is supported on
the lattice ((ℤ − 𝑛/4)/√𝑛)2, for a box 𝐵 with side lengths at least 1/√𝑛, we have
(4.2) ℒ0(𝐵) = 𝑂 (vol(𝐵)) ,
establishing (A4). Now, we claim that for every pair of vertices 𝑢, 𝑣 and every pair of
points ⃗𝑠, ⃗𝑡 ∈ 𝑄, we have

ℙ( ⃗𝑑(𝑢) = ⃗𝑡 and ⃗𝑑(𝑣) = ⃗𝑠) = (1 ± 𝑂(√log 𝑛/𝑛))ℙ( ⃗𝑑(𝑢) = ⃗𝑡)ℙ( ⃗𝑑(𝑣) = ⃗𝑠).
Indeed, we will then be able to apply Lemma 4.5 to establish that (A2) holds with
high probability. The claim follows from the following explicit calculation. The only
dependence between ⃗𝑑(𝑢) and ⃗𝑑(𝑣) comes from the potential edge between 𝑢 and 𝑣, but
we can check that if we condition on this edge being present (or not), the probabilities
ℙ( ⃗𝑑(𝑢) = ⃗𝑡) and ℙ( ⃗𝑑(𝑣) = ⃗𝑠) vary only by a factor of (1 ± 𝑂(√log 𝑛/𝑛)), which in itself
boils down to the observation that (𝑛/2−1𝑡 )/(𝑛/2−1𝑡−1 ) = (𝑛/2 − 𝑡)/𝑡 = 1 + 𝑂(|1/4 − 𝑡/𝑛|).
(Note that we are only considering ⃗𝑡 = (𝑡1, 𝑡2) for which |𝑡 − 𝑛/4| ≤ 𝑂(√𝑛 log 𝑛) for
𝑖 ∈ {1, 2}). □

4.2. Preliminaries for the inductive step. We start with some preparations before
proceeding to the details of the inductive step. First, we provide a proof of Lemma 4.4;
actually we prove the following more general lemma.

Lemma 4.6. For fixed 𝑐 > 0, 𝑑 ∈ ℕ and any 𝑞 ≥ 1, letℒ,ℒ′ be probability distributions
on ℝ𝑑 satisfying dK(ℒ,ℒ′) ≤ 𝑛−𝑐, ℒ′ ((−𝑞, 𝑞]𝑑) = 1, and ℒ(𝐵) ≤ 𝑞 vol(𝐵) for all boxes
𝐵 with side lengths at least 𝑛−𝑐. Then the following conclusions hold.



FRIENDLY BISECTIONS OF RANDOM GRAPHS 393

(1) For any region𝐻 ⊆ ℝ𝑑 defined as the intersection of 𝑂(1) (closed or open) affine
half-spaces, we have ℒ′(𝐻) = ℒ(𝐻) ± 𝑂(𝑞𝑑𝑛−𝑐/(2𝑑)).

(2) For any 𝑅 ⊆ ℝ𝑑 obtained as the region between two parallel (closed or open)
affine hyperplanes separated by a distance of at most 𝑛−𝑐, we have ℒ(𝑅) =
𝑂(𝑞𝑑𝑛−𝑐/(2𝑑)).

Here, the constants suppressed by the asymptotic notation in Lemma4.6 are allowed
to depend on the fixed parameters 𝑐 and 𝑑.

Proof of Lemma 4.6. Let 𝑄 = (−𝑞, 𝑞]𝑑, and note that ℒ(𝑄) = ℒ′(𝑄) ± 2𝑑𝑛−𝑐 ≥ 1 −
2𝑑𝑛−𝑐. As in the proof of the base case of Proposition 4.3 (in Section 4.1), we consider
a family 𝔅 of 𝑂(𝑞𝑑𝑛𝑐/2) half-open boxes with side lengths at most 𝐷 = 𝑛−𝑐/(2𝑑) that
partition 𝑄.
For the first point, let 𝔅+ ⊆ 𝔅 be the subcollection of boxes which intersect 𝐻, and

let 𝔅− ⊆ 𝔅 be the subcollection of boxes fully included in 𝐻, so that |𝔅+ ⧵ 𝔅−| =
𝑂((𝑞/𝐷)𝑑−1). We then observe that |ℒ′(𝐻) − ℒ(𝐻)| is bounded by

𝑂 (|𝔅+ ⧵ 𝔅−|𝑞𝐷𝑑 + |𝔅|𝑛−𝑐 + ℒ(𝑄c)) = 𝑂 (𝑞𝑑𝑛−𝑐/(2𝑑)) .
For the second part, let 𝔅+ be the subcollection of boxes that intersect 𝑅. The dis-

tance between the bounding hyperplanes of 𝑅, which is at most 𝑛−𝑐, is less than the
width 𝐷 of each box in our partition, so each box intersecting 𝑅 must in fact intersect
one of its bounding hyperplanes, whence |𝔅+| = 𝑂((𝑞/𝐷)𝑑−1) as earlier. We then ob-
serve as before that

ℒ(𝑅) = 𝑂 (|𝔅+|𝑞𝐷𝑑 + ℒ(𝑄c)) = 𝑂 (𝑞𝑑𝑛−𝑐/(2𝑑)) . □

Second, we isolate the part of the proof of Lemma 4.5 in which we approximated
Kolmogorov distance via small boxes.

Lemma 4.7. For fixed 𝑐 > 0 and 𝑑 ∈ ℕ, there exists a 𝑐′ = 𝑐′(𝑐, 𝑑) > 0 for which
the following holds. Let ℒ,ℒ′ be probability distributions on ℝ𝑑, where ℒ′ is (possibly) a
random object. Let 𝑄 = (−𝑞, 𝑞]𝑑 ⊆ ℝ𝑑 be a box for 𝑞 ≥ 1, and let 𝔅 be a partition of
it into at most (3𝑞)𝑑𝑛𝑐/2 boxes with side lengths at most 𝑛−𝑐/(2𝑑). Suppose the following
conditions are satisfied.

(1) For each 𝐵 ∈ 𝔅, we have |ℒ′(𝐵) −ℒ(𝐵)| ≤ 𝑛−𝑐 with probability at least 1 − 𝑛−𝑐.
(2) ℒ(𝑄c) ≤ 𝑛−𝑐, and ℒ′(𝑄c) ≤ 𝑛−𝑐 with probability at least 1 − 𝑛−𝑐.
(3) For each box 𝐵 ⊆ 𝑄 with side lengths at least 𝑛−𝑐, we have ℒ(𝐵) ≤ 𝑞 vol(𝐵).

Then, with probability at least 1 − 𝑂(𝑞𝑑𝑛−𝑐′), we have dK(ℒ,ℒ′) ≤ 𝑂(𝑞𝑑𝑛−𝑐′).

We will also need some lemmas for working with random graphs with constrained
degree sequences. These lemmas will be deduced from powerful enumeration theo-
rems due toMcKay andWormald [27] andCanfield, Greenhill, andMcKay [12]. Before
stating these lemmas, we define a notion of ‘closeness’ between two degree sequences.
This definition is chosen to be convenient for the proof of Proposition 4.3; it has two
cases which will both arise in different parts of the proof.

Definition 4.8. Consider a pair of sequences (𝑎(𝑣))𝑣∈𝑉 and (𝑏(𝑤))𝑤∈𝑊 . Let 𝒜, ℬ̂ be
the uniform measures on these sequences (obtained by choosing a random element of
each of these sequences). We say that (𝑎(𝑣))𝑣∈𝑉 and (𝑏(𝑤))𝑤∈𝑊 are 𝐶-proximate if at
least one of the following two conditions holds.
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(1) There is a bijection 𝜓 ∶ 𝑉 → 𝑊 such that∑𝑣∈𝑉 |𝑎(𝑣) − 𝑏(𝜓(𝑣))| ≤ 𝐶|𝑉|.
(2) ||𝑉| − |𝑊|| ≤ (|𝑉| + |𝑊|)1−1/𝐶 and dK(𝒜, ℬ̂) ≤ (|𝑉| + |𝑊|)−1/𝐶 .

In applications, we simply say that (𝑎(𝑣))𝑣∈𝑉 and (𝑏(𝑤))𝑤∈𝑊 are proximate if they are
𝐶-proximate for some 𝐶 = 𝑂(1) (recalling that implicit constants in asymptotic nota-
tion are allowed to depend on 𝑘 and 𝛼).

We are now ready to state the promised pair of lemmas. We defer the details of their
proofs to Appendix A. The first of these lemmas is for the non-bipartite setting. Recall
that ≃means equality up to a multiplicative factor (1 ± 𝑛−Ω(1)).

Lemma 4.9. Let (𝑑𝑤)𝑤∈𝑊 be a sequence with even sum on a set𝑊 of 𝑛 vertices such that
• 𝑑𝑤 = 𝑛/2 ± 𝑂(√𝑛 log 𝑛) for each 𝑤 ∈ 𝑊 ,
• ∑𝑤∈𝑇 𝑑𝑤 = 𝑛|𝑇|/2 ± 𝑂(𝑛3/2) for all 𝑇 ⊆ 𝑊 , and
• ∑𝑤∈𝑊 (𝑑𝑤 − 𝑛/2)2 = 𝑂(𝑛2).

Such a sequence is a graphic sequence for all sufficiently large 𝑛. Let 𝐺 be a uniformly
random graph on𝑊 with this degree sequence. Then, for any fixed 𝑣 ∈ 𝑊 and 𝑆 ⊆ 𝑊
satisfying |𝑆|, 𝑛 − |𝑆| = Ω(𝑛), the following hold.

(1) For any integer 0 ≤ 𝑡 ≤ |𝑆|, parameterising 𝑡 = |𝑆|/2 + 𝜏√𝑛, if |𝜏| > 𝑛1/10, then
we have

ℙ(deg𝑆(𝑣) = 𝑡) ≤ exp(−Ω(𝜏2)),
and if |𝜏| ≤ 𝑛1/10, then we have

ℙ(deg𝑆(𝑣) = 𝑡) ≤ exp(𝑂 (|𝜏| + √log 𝑛)) ℙ(𝑍 = 𝑡),
where 𝑍 = |𝑅 ∩ 𝑆| for a random subset 𝑅 ⊆ 𝑊 of size 𝑑𝑣, i.e.,

𝑍 ∼ Hypergeometric(𝑛, |𝑆|, 𝑑𝑣).
(2) Let us write

ℙ(deg𝑆(𝑣) = 𝑡) = 𝑝(𝑣, (𝑑𝑤)𝑤∈𝑆 , (𝑑𝑤)𝑤∉𝑆 , 𝑡)
as a function of 𝑣, the relevant degree sequences, and 𝑡. Then, for 𝑡 = |𝑆|/2 ±
𝑂(√𝑛 log 𝑛) and the other parameters as constrained above, this function 𝑝(⋅)
depends continuously on its parameters, in the following sense: if
• |𝑡 − 𝑡′|, |𝑑𝑣 − 𝑑′𝑣′ | ≤ 𝑛1/2−Ω(1),
• (𝑑𝑤)𝑤∈𝑆 and (𝑑′𝑤)𝑤∈𝑆′ are proximate, and
• (𝑑𝑤)𝑤∈𝑊⧵𝑆 and (𝑑′𝑤)𝑤∈𝑊 ′⧵𝑆′ are proximate,

then

𝑝(𝑣, (𝑑𝑤)𝑤∈𝑆 , (𝑑𝑤)𝑤∈𝑊⧵𝑆 , 𝑡) ≃ 𝑝(𝑣′, (𝑑′𝑤)𝑤∈𝑆′ , (𝑑′𝑤)𝑤∈𝑊 ′⧵𝑆′ , 𝑡′).

Next, the second of the promised pair of lemmas is for the bipartite setting.

Lemma 4.10. Let ((𝑑𝑣)𝑣∈𝑉 , (𝑑𝑤)𝑤∈𝑊 ) be a pair of sequences with identical sums on a
bipartition 𝑉 ∪𝑊 with |𝑉|, |𝑊| = Θ(𝑛) such that

• 𝑑𝑣 = |𝑊|/2 ± 𝑂(√𝑛 log 𝑛) for all 𝑣 ∈ 𝑉 and 𝑑𝑤 = |𝑉|/2 ± 𝑂(√𝑛 log 𝑛) for all
𝑤 ∈ 𝑊 ,

• ∑𝑣∈𝑇 𝑑𝑣 = |𝑊||𝑇|/2±𝑂(𝑛3/2) for all 𝑇 ⊆ 𝑉 and∑𝑤∈𝑇 𝑑𝑤 = |𝑉||𝑇|/2±𝑂(𝑛3/2)
for all 𝑇 ⊆ 𝑊 , and

• ∑𝑣∈𝑉 (𝑑𝑣 − |𝑊|/2)2 = 𝑂(𝑛2) and∑𝑤∈𝑊 (𝑑𝑤 − |𝑉|/2)2 = 𝑂(𝑛2).
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Such a pair of sequences form a bipartite-graphic sequence for all sufficiently large 𝑛. Let
𝐺 be a uniformly random bipartite graph between 𝑉 and 𝑊 with this degree sequence.
Then, for any fixed 𝑢 ∈ 𝑉 and 𝑆 ⊆ 𝑊 satisfying |𝑆|, 𝑛 − |𝑆| = Ω(𝑛), the following hold.

(1) For any integer 0 ≤ 𝑡 ≤ |𝑆|, parameterising 𝑡 = |𝑆|/2 + 𝜏√𝑛, if |𝜏| > 𝑛1/10, then
we have

ℙ(deg𝑆(𝑢) = 𝑡) ≤ exp(−Ω(𝜏2)),
and if |𝜏| ≤ 𝑛1/10, then we have

ℙ(deg𝑆(𝑢) = 𝑡) ≤ exp(𝑂 (|𝜏| + √log 𝑛)) ℙ(𝑍 = 𝑡),
where 𝑍 = |𝑅 ∩ 𝑆| for a random subset 𝑅 ⊆ 𝑊 of size 𝑑𝑣, i.e.,

𝑍 ∼ Hypergeometric(|𝑊|, |𝑆|, 𝑑𝑣).
(2) Let us write

ℙ(deg𝑆(𝑢) = 𝑡) = 𝑝(𝑢, (𝑑𝑣)𝑣∈𝑉 , (𝑑𝑤)𝑤∈𝑆 , (𝑑𝑤)𝑤∈𝑊⧵𝑆 , 𝑡)
as a function of 𝑢, the relevant degree sequences, and 𝑡. Then, for 𝑡 = |𝑆|/2 ±
𝑂(√𝑛 log 𝑛) and the other parameters as constrained above, this function 𝑝(⋅)
depends continuously on its parameters, in the following sense: if
• |𝑡 − 𝑡′|, |𝑑ᵆ − 𝑑′ᵆ′ | ≤ 𝑛1/2−Ω(1),
• (𝑑𝑣)𝑣∈𝑉 and (𝑑′𝑣)𝑣∈𝑉 ′ are proximate,
• (𝑑𝑤)𝑤∈𝑆 and (𝑑′𝑤)𝑤∈𝑆′ are proximate, and
• (𝑑𝑤)𝑤∈𝑊⧵𝑆 and (𝑑′𝑤)𝑤∈𝑊 ′⧵𝑆′ are proximate,

then
𝑝(𝑢, (𝑑𝑣)𝑣∈𝑉 , (𝑑𝑤)𝑤∈𝑆 , (𝑑𝑤)𝑤∈𝑊⧵𝑆 , 𝑡) ≃ 𝑝(𝑢′, (𝑑′𝑣)𝑣∈𝑉 , (𝑑′𝑤)𝑤∈𝑆′ , (𝑑′𝑤)𝑤∈𝑊 ′⧵𝑆′ , 𝑡′).
Finally, we require the following concentration properties of the edge-counts in a

random graph.
Lemma 4.11. There are absolute constants 𝐶, 𝑐 > 0 such that if 𝐺 ∼ 𝔾(𝑛, 1/2) is a
random graph, then with probability at least 1 − exp(−𝑐𝑛) we have for all disjoint 𝑆, 𝑇
that

(1) ∑𝑣∈𝑇(deg𝑆(𝑣) − |𝑆|/2)2 ≤ 𝐶𝑛2,
(2) ∑𝑣∈𝑇(deg𝑇(𝑣) − (|𝑇| − 1)/2)2 ≤ 𝐶𝑛2,
(3) |∑𝑣∈𝑇(deg𝑆(𝑣) − |𝑆|/2)| ≤ 𝐶𝑛3/2, and
(4) |∑𝑣∈𝑇(deg𝑇(𝑣) − (|𝑇| − 1)/2)| ≤ 𝐶𝑛3/2.
The proof of Lemma 4.11 is an immediate application of a Chernoff bound and the

union bound, similar to the proof of Lemma 2.1, so we omit the details.
Now we are ready to finish the proof of Proposition 4.3 by establishing its inductive

step.

4.3. Proof of the inductive step. Consider 𝑘 − 1 iterations of the 𝛼-swap process,
giving rise to a partition of the vertices into sets 𝑉𝑥, for 𝑥 ∈ {0, 1}𝑘, as defined in Defi-
nition 4.1. An additional iteration of the 𝛼-swap process will refine this to a partition
into sets 𝑉𝑥, for 𝑥 ∈ {0, 1}𝑘+1; to emphasise the difference between these two partitions
we write𝑊𝑥 instead of 𝑉𝑥 when 𝑥 ∈ {0, 1}𝑘.
By the inductive hypothesis, there are real numbers 𝜋𝑥 ≥ 𝛼4(𝑘−1)/2 and distribu-

tions ℒ𝑥 for 𝑥 ∈ {0, 1}𝑘 such that the following properties are satisfied with high prob-
ability.
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(B1) For each 𝑥 ∈ {0, 1}𝑘, we have
|||𝑊𝑥| − 𝜋𝑥𝑛|| ≤ 𝑛1−𝑐𝛼,𝑘−1 .

(B2) For each 𝑥 ∈ {0, 1}𝑘, we have
dK(ℒ̂𝑥, ℒ𝑥) ≤ 𝑛−𝑐𝛼,𝑘−1 .

(B3) For each vertex 𝑣 ∈ 𝑉(𝐺) and each 𝑥 ∈ {0, 1}𝑘, we have
||deg𝑊𝑥

(𝑣) − |𝑊𝑥|/2|| ≤ 𝐶𝛼,𝑘−1𝑛1/2√log 𝑛.

(B4) For each 𝑥 ∈ {0, 1}𝑘, and each box 𝐵 with side lengths 𝑛−𝑐𝛼,𝑘−1 we have

ℒ𝑥(𝐵) ≤ vol(𝐵) exp(𝐶𝛼,𝑘−1√log 𝑛).

Here, we remind the reader that ℒ̂𝑥 is an empirical distribution measuring the de-
grees of vertices in𝑊𝑥 into the various sets𝑊𝑦. Also, we remark that although (B4) as
written only concerns boxes with side lengths exactly 𝑛−𝑐𝛼,𝑘 , a simple covering argu-
ment shows that the same conclusion holds when 𝐵 is a box with side lengths at least
𝑛−𝑐𝛼,𝑘 (up to a constant factor).
Next, let

ℛ = ((𝑊𝑥)𝑥∈{0,1}𝑘 , (deg𝑊𝑥
(𝑣))𝑣∈𝑉(𝐺),𝑥∈{0,1}𝑘)

record the part and degree information after 𝑘 − 1 iterations of the 𝛼-swap process, so
(B1) to (B4) are all really properties ofℛ. Let ℰ be the event that all the conclusions of
Lemma 4.11 hold for all disjoint subsets of vertices 𝑆 and 𝑇. By Lemma 4.11, we have

𝔼 [ℙ(ℰc | ℛ)] = ℙ(ℰc) ≤ 𝑒−𝑐𝑛

for some universal 𝑐 > 0, so by Markov’s inequality, with high probability, ℛ has the
property that
(B5) ℙ(ℰ |ℛ) ≥ 1 − 𝑒−(𝑐/2)𝑛.
Now, let us condition on an outcome of ℛ satisfying (B1) to (B5); we say that such

an outcome iswell-behaved. It suffices to prove that, in the resulting conditional proba-
bility space, (A1) to (A4) hold with high probability. Note that, conditionally,𝐺 is now
a random graph with certain degree constraints. To be precise, for each 𝑥 ∈ {0, 1}𝑘, the
induced subgraph 𝐺[𝑊𝑥] is uniform over all graphs in which each 𝑣 ∈ 𝑊𝑥 has degree
deg𝑊𝑥

(𝑣), and for each pair of distinct 𝑥, 𝑦 ∈ {0, 1}𝑘, the subgraph 𝐺[𝑊𝑥,𝑊𝑦] (consist-
ing of the edges of 𝐺 between𝑊𝑥 and𝑊𝑦) is uniform over all bipartite graphs in which
each 𝑣 ∈ 𝑊𝑥 has degree deg𝑊𝑦

(𝑣) and each 𝑣 ∈ 𝑊𝑦 has degree deg𝑊𝑥
(𝑣). Furthermore,

all these random subgraphs of the form 𝐺[𝑊𝑥], 𝐺[𝑊𝑥,𝑊𝑦] are independent, and (B1),
(B3) and (B5) in particular ensure that either Lemma 4.9 or Lemma 4.10 applies to all
these subgraphs.
Recalling that we have performed 𝑘−1 iterations of the 𝛼-swap procedure so far, we

now consider the effect of a 𝑘th 𝛼-swap. Recall that this 𝛼-swap has two steps. First,
the ⌊𝛼𝑛⌋ unfriendliest vertices on each side are swapped. The information recorded in
ℛ is enough to determine the outcome of this first step. Second, a random pair of sets
of ⌊𝛼4𝑛⌋ vertices on each side are swapped; let 𝒮 be the random pair of sets that are
swapped in this second step, and note that 𝒮 is independent from 𝐺 conditional on the
partition at that time.
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For the remainder of this proof, asymptotic notation should be understood to be
treating 𝑘, 𝛼 as fixed constants, so, for example, the inequality in (B2) can be described
as saying dK(ℒ̂𝑥, ℒ𝑥) ≤ 𝑛−Ω(1).

4.3.1. Concentration of the part sizes. First we prove that (A1) holds with high prob-
ability. Let 𝑆 𝑖 = {𝑧 ∈ {0, 1}𝑘 ∶ 𝑧𝑘 = 𝑖}, and recall that the bisection resulting
from the first 𝑘 − 1 iterations of the 𝛼-swap process has parts 𝐴𝑘−1 = ⋃𝑧∈𝑆0 𝑊𝑧 and
𝐵𝑘−1 = ⋃𝑧∈𝑆1 𝑊𝑧. (Recall that 𝑧𝑘 records whether a vertex is in 𝐴𝑘−1 or 𝐵𝑘−1.)
Consider any 𝑧 ∈ {0, 1}𝑘, and let 𝑊 ′

𝑧 be the portion of 𝑊𝑧 that is swapped during
the first step of the 𝑘th 𝛼-swap (i.e., these vertices are among the ⌊𝛼𝑛⌋ unfriendliest
vertices in their part of the bisection 𝐴𝑘−1 ∪ 𝐵𝑘−1; this is determined by the outcome
of ℛ we have conditioned on). It suffices to prove that |𝑊 ′

𝑧 | = 𝜋′𝑧𝑛 ± 𝑛1−Ω(1), for some
𝜋′𝑧 that does not depend on the specific choice of ℛ that we are conditioning on (but
demanding no lower bound on 𝜋′𝑧). Indeed, for any 𝑏 ∈ {0, 1}, the second part of the
𝛼-swap process (in which we randomly swap sets 𝐴′, 𝐵′ of ⌊𝛼4𝑛⌋ vertices on both sides)
will then, with high probability, yield |𝑉 (𝑧,𝑏)| = 𝜋(𝑧,𝑏)𝑛 ± 𝑛1−Ω(1), where

𝜋(𝑧,𝑏) = {𝛼
4𝜋′𝑧 + (1 − 𝛼4)(𝜋𝑧 − 𝜋′𝑧) if 𝑧𝑘 = 𝑏,
𝛼4(𝜋𝑧 − 𝜋′𝑧) + (1 − 𝛼4)𝜋′𝑧 if 𝑧𝑘 ≠ 𝑏

≥ 𝛼4𝜋𝑧 ≥ 𝛼4 ⋅ 𝛼4(𝑘−1)/2 = 𝛼4𝑘/2.

Here we have used (B1) and a Chernoff bound for the hypergeometric distribution; see
for example [22, Theorem 2.10].
To this end, we study the sets 𝑊 ′

𝑧 . Assume without loss of generality that 𝑧𝑘 = 0
(i.e.,𝑊 ′

𝑧 ⊆ 𝐴𝑘−1). Let 𝐴′ be the set of the ⌊𝛼𝑛⌋ unfriendliest vertices in 𝐴𝑘−1 (so𝑊 ′
𝑧 =

𝑊𝑧 ∩ 𝐴′), and let 𝐴(𝜁) be the set of vertices in 𝐴𝑘−1 with friendliness at most 𝜁√𝑛. We
will approximate 𝐴′ with 𝐴(𝜁), for an appropriate choice of 𝜁.
For 𝜁 ∈ ℝ, define the affine half-space

𝐻𝜁 = {𝑑 ∈ ℝ{0,1}𝑘 ∶ ∑
𝑦∈𝑆0

𝑑𝑦 − ∑
𝑦∈𝑆1

𝑑𝑦 ≤ 𝜁} .

Then, |𝐴(𝜁)| = ∑𝑦∈𝑆0 |𝑊𝑦|ℒ̂𝑦(𝐻𝜁). Let us set

𝑓(𝜁) = ∑
𝑦∈𝑆0

𝜋𝑦ℒ𝑦(𝐻𝜁).

By the second point in Lemma 4.6, the function 𝑓 satisfies a Lipschitz-like property:
if |𝜁 − 𝜁′| ≤ 𝑛−Ω(1) then |𝑓(𝜁) − 𝑓(𝜁′)| ≤ 𝑛−Ω(1). Since lim𝜁→−∞ 𝑓(𝜁) = 0 and
lim𝜁→∞ 𝑓(𝜁) = ∑𝑦∈𝑆0 𝜋𝑦 = 1/2+ 𝑜(1), there is some 𝜁𝛼 such that |𝑓(𝜁𝛼) − 𝛼| ≤ 𝑛−Ω(1).
By the first point in Lemma 4.6, we then have ||𝐴′| − |𝐴(𝜁𝛼)|| ≤ 𝑛1−Ω(1). That is to

say, the set 𝐴′ differs from the set 𝐴(𝜁𝛼) by only 𝑛1−Ω(1) elements (noting that either
𝐴′ ⊆ 𝐴(𝜁) or 𝐴(𝜁) ⊆ 𝐴′ always). Again using the first point in Lemma 4.6, it follows that

|𝑊 ′
𝑧 | = |𝑊𝑧 ∩ 𝐴′| = |𝑊𝑧 ∩ 𝐴(𝜁𝛼)| ± 𝑛1−Ω(1) = |𝑊𝑧|ℒ̂(𝐻𝜁𝛼) ± 𝑛1−Ω(1) = 𝜋′𝑧𝑛 ± 𝑛1−Ω(1),

as desired, where 𝜋′𝑧 = 𝜋𝑧ℒ(𝐻𝜁𝛼).
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4.3.2. Some intermediate empirical degree distributions. For a vertex 𝑣, define the de-
gree vector

(4.3) ⃗𝑔(𝑣) = ((deg𝑊𝑦
(𝑣) − |𝑊𝑦|/2)/√𝑛)𝑦∈{0,1}𝑘

(which is determined by ℛ), and recall that for 𝑧 ∈ {0, 1}𝑘, ℒ̂𝑧 is the uniform mea-
sure on the sequence ( ⃗𝑔(𝑣))𝑣∈𝑊𝑧 . For 𝑏 ∈ {0, 1}, let 𝒟̂(𝑧,𝑏) be the uniform measure on
( ⃗𝑔(𝑣))𝑣∈𝑉(𝑧,𝑏) (which depends on ℛ, 𝒮, but not the remaining randomness of 𝐺). This
can be thought of as an ‘intermediate’ empirical degree distribution between ℒ̂𝑧 and
ℒ̂(𝑧,𝑏), where we consider the degrees from vertices in 𝑉 (𝑧,𝑏) into the sets𝑊𝑦.
The considerations in the previous section give us quite strong control over the

𝒟̂(𝑧,𝑏). Indeed, for any box 𝐵 ⊆ ℝ{0,1}𝑘 let𝑊𝑧(𝐵) be the set of all 𝑣 ∈ 𝑊𝑧 with ⃗𝑔(𝑣) ∈ 𝐵,
and as in the last section, assume without loss of generality that 𝑧𝑘 = 0. Let 𝜌′𝑧(𝐵) =
𝜋𝑧ℒ𝑧(𝐵 ∩𝐻𝜁𝛼), so that |𝑊𝑧(𝐵) ∩𝑊 ′

𝑧 | = 𝜌′𝑧(𝐵)𝑛± 𝑛1−Ω(1), and a concentration inequal-
ity for the hypergeometric distribution shows that with probability 1−𝑂(1/𝑛) over the
randomness of 𝒮, we have |𝑊𝑧(𝐵) ∩ 𝑉 (𝑧,𝑏)| = 𝜌𝑧(𝐵)𝑛 ± 𝑛1−Ω(1), where

𝜌(𝑧,𝑏)(𝐵) = {𝛼
4𝜌′𝑧(𝐵) + (1 − 𝛼4)(𝜋𝑧ℒ𝑧(𝐵) − 𝜌′𝑧(𝐵)) if 𝑧𝑘 = 𝑏,
𝛼4(𝜋𝑧ℒ𝑧(𝐵) − 𝜌′𝑧(𝐵)) + (1 − 𝛼4)𝜌′𝑧(𝐵) if 𝑧𝑘 ≠ 𝑏.

Since 𝒟̂(𝑧,𝑏)(𝐵) = |𝑊𝑧(𝐵) ∩ 𝑉 (𝑧,𝑏)|/|𝑉 (𝑧,𝑏)|, (A1) implies that 𝒟̂(𝑧,𝑏)(𝐵) = 𝒟(𝑧,𝑏)(𝐵) ±
𝑛−Ω(1), where𝒟(𝑧,𝑏) is the probability distribution for which𝒟(𝑧,𝑏)(𝑆) is proportional
to 𝜌(𝑧,𝑏)(𝑆) for all boxes 𝑆 ⊆ ℝ{0,1}𝑘 . Recalling (B3) and (B4), and partitioning the big
box

𝑄 = (−𝐶𝛼,𝑘−1√log 𝑛, 𝐶𝛼,𝑘−1√log 𝑛]
2𝑘

into 𝑛𝑐/2+𝑜(1) boxes with side lengths 𝑛−𝑐/(2⋅2𝑘) for a sufficiently small 𝑐 > 0, it follows
from Lemma 4.7 that dK(𝒟̂(𝑧,𝑏), 𝒟(𝑧,𝑏)) ≤ 𝑛−Ω(1) with high probability over the ran-
domness of 𝒮.

4.3.3. Controlling the outlier degrees. We next prove that (A3) holds with high proba-
bility. In addition to our conditioning on ℛ, in this subsection we also condition on
an outcome of 𝒮 such that each |𝑉𝑥| = Ω(𝑛). Note we proved in Section 4.3.1 that
|𝑉𝑥| = 𝜋𝑥𝑛+𝑜(𝑛)with high probability and 𝜋𝑥 ≥ 𝛼4(𝑘−1)/2, so in particular |𝑉𝑥| ≥ Ω(𝑛)
with high probability.
Fix an arbitrary 𝑥 ∈ {0, 1}𝑘+1 and 𝑦 ∈ {0, 1}𝑘. We wish to show that with high

probability, for every 𝑣 ∈ 𝑊𝑦 we have ||deg𝑉𝑥(𝑣) − |𝑉𝑥|/2|| ≤ 𝐶𝛼,𝑘√𝑛 log 𝑛, for some
𝐶𝛼,𝑘 > 0. This suffices, since we will then be able to take the union bound over all𝑂(1)
choices of 𝑥, 𝑦. The desired bound follows from part (1) of Lemma 4.9 and part (1)
of Lemma 4.10 along with a Chernoff bound for the hypergeometric distribution and
a union bound over 𝑣 ∈ 𝑊𝑦: if 𝑧 = (𝑥1, . . . , 𝑥𝑘) satisfies 𝑧 = 𝑦, then we consider
the degree-constrained random graph 𝐺[𝑊𝑦], and if we instead have 𝑧 ≠ 𝑦, then we
consider the degree-constrained bipartite graph 𝐺[𝑊𝑦,𝑊𝑧].

4.3.4. Defining the ideal distributions. We shall address (A4) first before turning to
(A2) (which is by far the most involved of the four properties). Therefore, at this junc-
ture, we take a moment to say something about how we will define the distributions
ℒ𝑥 for 𝑥 ∈ {0, 1}𝑘+1. First, for specific outcomes of ℛ, 𝒮 (which determine the sets 𝑉𝑥
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for 𝑥 ∈ {0, 1}𝑘+1), we letℒℛ,𝒮
𝑥 be the distribution obtained by choosing a random 𝑣 ∈ 𝑉𝑥

and sampling its degree vector

⃗𝑑(𝑣) = ((deg𝑉𝑦(𝑣) − |𝑉𝑦|/2)/√𝑛)𝑦∈{0,1}𝑘+1
according to the remaining randomness in 𝐺. We will later show that if ℛ is well-
behaved, and 𝒮 also satisfies certain properties that hold with high probability, then
ℒℛ,𝒮
𝑥 is actually not very sensitive to the specific choice of ℛ and 𝒮, whence we will be

able to prove that (A2) holds with high probability when we take ℒ𝑥 to be any such
ℒℛ,𝒮
𝑥 .

4.3.5. Anti-concentration. Here, we show that (A4) holds. As in Section 4.3.3, we con-
dition on a well-behaved outcome of ℛ as well as on an outcome of 𝒮 such that each
|𝑉𝑥| = Ω(𝑛). By the above discussion, it suffices to show that ℒℛ,𝒮

𝑥 satisfies the anti-
concentration property in (A4). The rough idea for establishing this involves combin-
ing Lemmas 4.9 and 4.10 (which provide anti-concentration subject to the remaining
randomness in 𝐺) with the anti-concentration property in (B4) coming from the out-
come of the process so far.
Fix a vertex 𝑣 ∈ 𝑊𝑧 for some 𝑧 ∈ {0, 1}𝑘. By part (1) of Lemma 4.9 and part (1) of

Lemma 4.10, for 𝑦 ∈ {0, 1}𝑘 and 𝑡 ∈ ℕ, parameterising 𝑡 = |𝑉 (𝑦,0)|/2+𝜏√𝑛 and writing
𝑑𝑣 = deg𝑊𝑦

(𝑣), we have

ℙ(deg𝑉(𝑦,0)(𝑣) = 𝑡) ≤ exp(𝑂 (√log 𝑛)) 𝑛−1/2

uniformly in 𝑡. Indeed, when applying Lemma 4.9, this holds with room to spare when
|𝜏| > |𝑉 (𝑦,0)|1/10 = Ω(𝑛1/10), and when |𝜏| ≤ |𝑉 (𝑦,0)|1/10, we may see that we uniformly
have

ℙ(deg𝑉(𝑦,0)(𝑣) = 𝑡) ≤ exp(𝑂 (|𝜏| + √log 𝑛))
(|𝑉(𝑦,0)|𝑡 )(|𝑊𝑦|−|𝑉(𝑦,0)|

𝑑𝑣−𝑡
)

(𝑚−1
𝑑𝑣

)

≤ exp(𝑂 (√log 𝑛)) 𝑛−1/2

by a standard anti-concentration inequality for the hypergeometric distribution (see
for example [14, Lemma 3.2]).
Since we are conditioning onℛ, 𝒮, the degree-constrained random graph𝐺[𝑊𝑧] and

the degree-constrained bipartite graphs𝐺[𝑊𝑧,𝑊𝑦] are all independent, so the 2𝑘 differ-
ent degrees deg𝑉(𝑦,0)(𝑣), for 𝑦 ∈ {0, 1}𝑘, are all independent as well. Thus, we obtain
the uniform joint anti-concentration bound

ℙ(deg𝑉(𝑦,0)(𝑣) = 𝑡𝑦 for all 𝑦 ∈ {0, 1}𝑘) ≤ exp(𝑂 (√log 𝑛)) (𝑛−1/2)2
𝑘
.

Note that for each 𝑦 ∈ {0, 1}𝑘, the degrees deg𝑉(𝑦,0)(𝑣) and deg𝑉(𝑦,1)(𝑣) are certainly not
independent, since deg𝑉(𝑦,0)(𝑣)+deg𝑉(𝑦,1)(𝑣) = deg𝑊𝑦

(𝑣) is determined byℛ. Nonethe-
less, our joint anti-concentration bound does imply that for any box 𝐵 ⊆ ℝ{0,1}𝑘+1 with
side lengths 𝐷 ≥ 1/√𝑛, we have

(4.4) ℙ ( ⃗𝑑(𝑣) ∈ 𝐵) ≤ exp(𝑂 (√log 𝑛))𝐷2𝑘 .
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Note that vol(𝐵) = 𝐷2𝑘+1 , so (4.4) only provides ‘half as much anti-concentration’ as
we desire for (A4). So far, we have only considered anti-concentration of ⃗𝑑(𝑣) when
𝑣 is a fixed vertex; we will next establish the remainder of our anti-concentration and
(A4) proper by allowing 𝑣 to vary and appealing to (B2) and (B4).
Recall the definition of the degree vectors ⃗𝑔(𝑣) and the intermediate empirical dis-

tributions 𝒟̂(𝑧,𝑏) from Section 4.3.2: the empirical distribution ℒ̂𝑧 is defined in terms
of a uniformly random vertex 𝑣 ∈ 𝑊𝑧, and 𝒟̂(𝑧,𝑏) is then obtained by conditioning on
the event that 𝑣 ∈ 𝑉 (𝑧,𝑏). Recall that |𝑉 (𝑧,𝑏)| = Ω(𝑛) = Ω(1)|𝑊𝑧|, meaning that we are
conditioning on an event that holds with probability at leastΩ(1). So, (B4) implies the
same anti-concentration property in the 𝒟̂(𝑧,𝑏), i.e.,

(4.5) 𝒟̂𝑥(𝐵) ≤ exp(𝑂 (√log 𝑛)) vol(𝐵),

for all boxes 𝐵 ⊆ ℝ{0,1}𝑘 with side lengths at least 𝑛−𝑐, where 𝑐 = 𝑐𝛼,𝑘−1, and all 𝑥 ∈
{0, 1}𝑘+1.
Now, let𝜋∶ ℝ{0,1}𝑘+1→ℝ{0,1}𝑘 be the linearmap (𝑑𝑥)𝑥∈{0,1}𝑘+1↦(𝑑(𝑦,0)+𝑑(𝑦,1))𝑦∈{0,1}𝑘 .

Note that ⃗𝑔(𝑣) = 𝜋( ⃗𝑑(𝑣)) for all 𝑣, and note that if𝐵 ⊆ ℝ{0,1}𝑘+1 is a boxwith side lengths
𝑛−𝑐, then 𝜋(𝐵) is contained in a box with side lengths 2𝑛−𝑐. So, by (4.4) and (4.5), we
have

ℒℛ,𝒮
𝑥 (𝐵) = ∑

𝑣∈𝑉𝑥∶𝑔⃗(𝑣)∈𝜋(𝐵)

1
|𝑉𝑥|

⋅ ℙ ( ⃗𝑑(𝑣) ∈ 𝐵)

≤ 𝒟̂𝑥(𝜋(𝐵)) sup
𝑣∈𝑉𝑥

ℙ ( ⃗𝑑(𝑣) ∈ 𝐵)

≤ exp(𝑂 (√log 𝑛)) (2𝑛−𝑐)2𝑘(𝑛−𝑐)2𝑘

≤ exp(𝑂 (√log 𝑛)) vol(𝐵)

for all 𝑥 ∈ {0, 1}𝑘+1, as desired.

4.3.6. Concentration of the empirical degree distributions. In this subsection we use a
second moment calculation as in Section 4.1 to show that if we condition on appropri-
ate outcomes of ℛ and 𝒮, then with high probability, for any 𝑥 ∈ {0, 1}𝑘+1, we have

dK (ℒ̂𝑥, ℒℛ,𝒮
𝑥 ) ≤ 𝑛−Ω(1).

We shall later prove that the distributions ℒℛ,𝒮
𝑥 , for appropriate ℛ, 𝒮, are all

Kolmogorov-close to each other; it will then follow that (A2) holds with high prob-
ability.
As in the previous two subsections, we condition on a well-behaved outcome of ℛ

and an outcome of 𝒮 for which |𝑉𝑥| = Ω(𝑛) for all 𝑥 ∈ {0, 1}𝑘+1. Fix an 𝑥 ∈ {0, 1}𝑘+1,
and as before, let 𝑄 = (−𝐶𝛼,𝑘√log 𝑛, 𝐶𝛼,𝑘√log 𝑛]2

𝑘+1 , where 𝐶𝛼,𝑘 is as chosen in Sec-
tion 4.3.3 (so, we have say ℒ𝑥(𝑄c) ≤ 𝑛−2).
We wish to apply Lemma 4.5. To this end, we shall, for an arbitrary pair of vertices

𝑢 and 𝑣, study conditional probabilities of the form

ℙ(deg𝑉(𝑧,𝑏)(𝑣) = 𝑡 || 𝑁𝑊𝑧(𝑢) = 𝑇) ,
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where 𝑧 ∈ {0, 1}𝑘, 𝑏 ∈ {0, 1}, and 𝑇 is a set of deg𝑊𝑧
(𝑢) elements of 𝑊𝑧 ⧵ {𝑢}. Let

𝑅(𝑧,𝑏) = {𝑡 ∶ ||𝑡 − |𝑉 (𝑧,𝑏)|/2|| ≤ 𝐶𝛼,𝑘√𝑛 log 𝑛}. We will show that for such data 𝑢, 𝑣, 𝑧, 𝑏,
and each 𝑡 ∈ 𝑅(𝑧,𝑏), the value of the above conditional probability is not very sensitive
to the choice of 𝑇.
Let 𝑦 ∈ {0, 1}𝑘 be such that 𝑣 ∈ 𝑊𝑦. As usual, we need to consider separately the

case where 𝑦 = 𝑧 andwhere 𝑦 ≠ 𝑧; in the former case, we study the degree-constrained
random graph 𝐺[𝑊𝑦], and in the latter case we study the degree-constrained random
bipartite graph 𝐺[𝑊𝑦,𝑊𝑧].
If 𝑦 = 𝑧, then having conditioned on the event 𝑁𝑊𝑦(𝑢) = 𝑇, now 𝐺[𝑊𝑦 ⧵ {𝑢}] is a

random graph with a particular degree sequence (namely, the degree sequence where
we delete 𝑢 if it is in 𝑊𝑦, and if so we also decrement the degree of every vertex in 𝑇
by one). Considering how this degree sequence varies for different choices of 𝑇, 𝑇 ′, it
follows from part (2) of Lemma 4.9 (and the first part of Definition 4.8) that for each
𝑢, 𝑣, 𝑧, 𝑏 as above, each 𝑡 ∈ 𝑅(𝑧,𝑏), and each such pair 𝑇, 𝑇 ′, we have

ℙ(deg𝑉(𝑧,𝑏)(𝑣) = 𝑡 || 𝑁𝑊𝑧(𝑢) = 𝑇) ≃ ℙ (deg𝑉(𝑧,𝑏)(𝑣) = 𝑡 || 𝑁𝑊𝑧(𝑢) = 𝑇 ′) .

We obtain the same conclusion if 𝑧 ≠ 𝑦 by considering the bipartite graph 𝐺[𝑊𝑦,𝑊𝑧],
except now relying on Lemma 4.10.
The above argument implies that for all 𝑢, 𝑣, 𝑧, 𝑏, 𝑡 as above, we in fact have

ℙ(deg𝑉(𝑧,𝑏)(𝑣) = 𝑡 || 𝑁𝑊𝑧(𝑢) = 𝑇) ≃ ℙ (deg𝑉(𝑧,𝑏)(𝑣) = 𝑡) .

Observing that all the random subgraphs of the form 𝐺[𝑊𝑦], 𝐺[𝑊𝑦,𝑊𝑧] are indepen-
dent, we deduce that for any ⃗𝜏, 𝜎⃗ ∈ 𝑄, we have

ℙ( ⃗𝑑(𝑣) = ⃗𝜏 and ⃗𝑑(𝑢) = 𝜎⃗) ≃ ℙ( ⃗𝑑(𝑣) = ⃗𝜏)ℙ( ⃗𝑑(𝑢) = 𝜎⃗).

Therefore we can apply Lemma 4.5, using (A4) (which we have already proved) and
the fact thatℒ𝑥(𝑄c) ≤ 1/𝑛2 for all 𝑥 ∈ {0, 1}𝑘+1, to conclude that (A2) holds with high
probability.

4.3.7. Sensitivity to the conditioned information. To finish, we wish to show that for all
𝑥 ∈ {0, 1}𝑘+1, well-behaved ℛ and ℛ′, and almost all outcomes 𝒮 and 𝒮′, we have

dK (ℒℛ,𝒮
𝑥 , ℒℛ′,𝒮′

𝑥 ) ≤ 𝑛−Ω(1).

This will complete the proof of the inductive step of Proposition 4.3.
Recall the definitions of the degree vectors ⃗𝑔(𝑣) and the intermediate degree distri-

butions 𝒟̂𝑥,𝒟𝑥 from Section 4.3.2. In that subsection, we showed for all well-behaved
ℛ that, with high probability over 𝒮, we have dK(𝒟̂𝑥, 𝒟𝑥) ≤ 𝑛−Ω(1). Let 𝑐 (depending
on 𝛼, 𝑘) be sufficiently small such that dK(𝒟̂𝑥, 𝒟𝑥) ≤ 𝑛−𝑐 with high probability, and
let us now call an outcome of 𝒮 well-behaved if this is the case for all 𝑥 ∈ {0, 1}𝑘+1.
Let 𝜋 ∶ ℝ{0,1}𝑘+1 → ℝ{0,1}𝑘 be the linear map (𝑑𝑥)𝑥∈{0,1}𝑘+1 ↦ (𝑑(𝑦,0) + 𝑑(𝑦,1))𝑦∈{0,1}𝑘 ,

as was the case in Section 4.3.5. If we condition on any ℛ, 𝒮, then for any 𝑣 ∈ 𝑉𝑥 and
any ⃗𝜏 ∈ ℝ{0,1}𝑘+1 with ⃗𝑔(𝑣) = 𝜋( ⃗𝜏), we have

ℙ( ⃗𝑑(𝑣) = ⃗𝜏) = ∏
𝑦∈{0,1}𝑘

ℙ(deg𝑉(𝑦,0)(𝑣) = 𝑡𝑦),
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where (𝑡𝑦 − |𝑉 (𝑦,0)|/2)/√𝑛 = 𝜏𝑦. Now, probabilities of the form ℙ(deg𝑉𝑥(𝑣) = 𝑡) are
actually not very sensitive to the specific choice of 𝑣, 𝑡, ℛ, 𝒮, in the following sense.
Suppose ℛ, 𝒮,ℛ′, 𝒮′ are all well-behaved, and for some 𝑦 ∈ {0, 1}𝑘, let 𝑣 ∈ 𝑊ℛ

𝑦 and
𝑣′ ∈ 𝑊ℛ′

𝑦 be vertices in the ‘same part’ with respect to ℛ and ℛ′. Moreover, suppose
that

‖
‖ ⃗𝑔ℛ(𝑣) − ⃗𝑔ℛ′(𝑣′)‖‖∞ ≤ 𝑛1/2−Ω(1).

Then for any 𝑥 ∈ {0, 1}𝑘+1 and 𝑡, 𝑡′ = 𝜋𝑥𝑛/2 ± 𝑛1/2−Ω(1), by part (2) of Lemma 4.9 and
part (2) of Lemma 4.10 (and using the second part of Definition 4.8), we have

(4.6) ℙ (deg𝑉ℛ,𝒮
𝑥
(𝑣) = 𝑡 || ℛ, 𝒮) ≃ ℙ (deg𝑉ℛ′,𝒮′

𝑥
(𝑣′) = 𝑡′ || ℛ′, 𝒮′) .

Now, consider well-behaved data ℛ, 𝒮,ℛ′, 𝒮′, and fix some 𝑥 ∈ {0, 1}𝑘+1. Our next
objective is to construct an injectivemapping 𝜙 between subsets of𝑉ℛ,𝒮

𝑥 and𝑉ℛ′,𝒮′
𝑥 that

maps a vertex 𝑣 ∈ 𝑉ℛ,𝒮
𝑥 to a vertex 𝜙(𝑣) ∈ 𝑉ℛ′,𝒮′

𝑥 with ‘roughly the same statistics’ as
𝑣. This will allow us to compare probabilities conditional on the outcomes (ℛ, 𝒮) with
probabilities conditional on the outcomes (ℛ′, 𝒮′).
First, let 𝑄 = (−𝐶𝛼,𝑘√log 𝑛, 𝐶𝛼,𝑘√log 𝑛]2

𝑘+1 , so by the same considerations as in
Section 4.3.3, we know that

ℒℛ,𝒮
𝑥 (𝑄c) ≤ 1/𝑛 and ℒℛ′,𝒮′

𝑥 (𝑄c) ≤ 1/𝑛.

Now, partition 𝑄 into a collection 𝔅 of 𝑛𝑐/2+𝑜(1) boxes with side lengths 𝑛−𝑐/(2⋅2𝑘+1).
Since ℛ, 𝒮,ℛ′, 𝒮′ are all well-behaved, we have

dK (𝒟̂ℛ,𝒮
𝑥 , 𝒟̂ℛ′,𝒮′

𝑥 ) ≤ 𝑛−𝑐.

Also, we may assume with no loss of generality that 𝑐 is sufficiently small, and in par-
ticular, that 𝑐 < 𝑐𝛼,𝑘, so by (A1), we have |𝑉ℛ,𝒮

𝑥 | = |𝑉ℛ′,𝒮′
𝑥 | ± 𝑛1−𝑐. It follows that, for

each 𝐵 ∈ 𝔅, if we consider the sets

𝑉ℛ,𝒮
𝑥 (𝐵) = {𝑣 ∈ 𝑉ℛ,𝒮

𝑥 ∶ ⃗𝑔(𝑣) ∈ 𝜋(𝐵)} and 𝑉ℛ′,𝒮′
𝑥 (𝐵) = {𝑣 ∈ 𝑉ℛ′,𝒮′

𝑥 ∶ ⃗𝑔(𝑣) ∈ 𝜋(𝐵)},

then we have
|𝑉ℛ,𝒮
𝑥 (𝐵)| = |𝑉ℛ′,𝒮′

𝑥 (𝐵)| ± 𝑂 (𝑛1−𝑐) .
Now, let

𝑚(𝐵) = min{|𝑉ℛ,𝒮
𝑥 (𝐵)|, |𝑉ℛ′,𝒮′

𝑥 (𝐵)|} ,

and let𝑈 ⊆ 𝑉ℛ,𝒮
𝑥 be obtained by choosing𝑚(𝐵) elements from each 𝑉ℛ,𝒮

𝑥 (𝐵) for 𝐵 ∈ 𝔅,
so that

|𝑈| ≥ |𝑉ℛ,𝒮
𝑥 | − 𝑂 (𝑛1−𝑐/2+𝑜(1)) .

Let 𝜙 ∶ 𝑈 → 𝑉ℛ′,𝒮′
𝑥 be an injection such that 𝜙(𝑣) ∈ 𝑉ℛ′,𝒮′

𝑥 (𝐵) for each 𝑣 ∈ 𝑈∩𝑉ℛ,𝒮
𝑥 (𝐵)

(we think of 𝜙 as providing a coupling between a uniformly random vertex in 𝑉ℛ,𝒮
𝑥

and a uniformly random vertex in 𝑉ℛ′,𝒮′
𝑥 , up to a change of 𝑂(𝑛−𝑐) in total variation

distance). Each 𝐵 ∈ 𝔅 has ℓ∞-diameter𝑂(𝑛−𝑐/(2⋅2𝑘+1)), so applying (4.6) and summing
over points in 𝐵, we see for all 𝑣 ∈ 𝑈 that

ℙ ( ⃗𝑑(𝑣) ∈ 𝐵 |ℛ, 𝒮) = (1 ± 𝑛−𝑐′)ℙ ( ⃗𝑑(𝜙(𝑣)) ∈ 𝐵 |ℛ′, 𝒮′) ,
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for some 𝑐′ > 0 depending on 𝑐 and 𝑘. Now, if we coarsen 𝔅 into a partition 𝔅′ of
𝑛𝑐′/2+𝑜(1) boxes with side lengths at most 𝑛−𝑐′/(2⋅2𝑘+1), then we easily see that the con-
ditions of Lemma 4.7 are satisfied, and we deduce that dK(ℒℛ,𝒮

𝑥 , ℒℛ′,𝒮′
𝑥 ) ≤ 𝑛−Ω(1) as

desired. This finishes the inductive proof of Proposition 4.3.

Appendix A. Probabilities in degree-constrained graph models

We start by showing how Lemma 4.9 follows from a series of results of increasing
precision about random graphs with specified degree sequences.

PropositionA.1. Let (𝑑𝑤)𝑤∈𝑊 be a sequence with even sum on a set𝑊 of 𝑛 vertices such
that, defining 𝛽𝑤 by 𝑑𝑤 = (𝑛 − 1)/2 + 𝛽𝑤√(𝑛 − 1)/2, we have

• |𝛽𝑤| ≤ log 𝑛 for each 𝑤 ∈ 𝑊 , and
• ∑𝑤∈𝑊 𝛽2𝑤 ≤ 𝑛(log 𝑛)1/9.

Such a sequence is a graphic sequence for all sufficiently large 𝑛. Let 𝐺 be a uniformly
random graph with this degree sequence on the vertex set𝑊 . Consider any fixed 𝑣 ∈ 𝑊 ,
any fixed subset 𝑆 ⊆ 𝑊 of size ℎ satisfyingmin(ℎ, 𝑛 − ℎ) ≥ 𝑛/(log 𝑛)1/8, and an integer
𝑡 ∈ [0, 𝑑𝑣]. If |𝑡 − ℎ/2| > 𝑛3/5, then we have
(A.1) ℙ(deg𝑆(𝑣) = 𝑡) ≤ exp(−Ω((𝑡 − ℎ/2)2/𝑛)).

If |𝑡 − ℎ/2| ≤ 𝑛3/5 on the other hand, then we have

(A.2) ℙ(deg𝑆(𝑣) = 𝑡) = (1 ± 𝑂(𝑛−1/10))
(ℎ𝑡)(

𝑛−ℎ−1
𝑑𝑣−𝑡

)
(𝑛−1𝑑𝑣

)
exp(Λ1 − Λ2 − Λ3 + Λ4),

where Λ1, Λ2, Λ3 and Λ4 are given by

Λ1 =
1
2𝑛2 (∑𝑖∈𝑊

𝛽𝑖) (∑
𝑖∈𝑊

𝛽𝑖 − 2𝑛𝛽𝑣) ,

Λ2 = ∑
𝑖∈𝑆⧵𝑣

(1 − 2𝑡
ℎ )

𝛽𝑖
√𝑛 − 1

+ ∑
𝑖∈𝑆c⧵𝑣

(1 − 2(𝑑𝑣 − 𝑡)
(𝑛 − ℎ) )

𝛽𝑖
√𝑛 − 1

,

Λ3 =
1
2 ∑
𝑖∈𝑊⧵𝑣

𝛽2𝑖
𝑛 − 1, and

Λ4 =
1
2𝑛ℎ ∑

𝑖,𝑗∈𝑆⧵𝑣
(𝛽𝑖 − 𝛽𝑗)2 +

1
2𝑛(𝑛 − ℎ) ∑

𝑖,𝑗∈𝑆c⧵𝑣
(𝛽𝑖 − 𝛽𝑗)2,

the sums in the definition of Λ4 being over all (unordered) two-element subsets.

First, we deduce Lemma 4.9 from Proposition A.1. To this end, we need LemmaA.2
comparing the moments of distributions that are bounded and Kolmogorov-close.

Lemma A.2. Fix 𝑐 > 0 and 𝑘 ∈ ℕ. If (𝑎𝑣)𝑣∈𝑉 and (𝑏ᵆ)ᵆ∈𝑈 are two sequences of Ω(𝑛)
real numbers with |||𝑉| − |𝑈||| ≤ 𝑛1−𝑐 satisfying |𝑎𝑣|, |𝑏ᵆ| < 𝑞, and such that the uniform
measures𝒜, ℬ̂ on the two lists satisfy dK(𝒜, ℬ̂) ≤ 𝑛−𝑐, then we have

||||
∑
𝑣∈𝑉

𝑎𝑘𝑣 − ∑
ᵆ∈𝑈

𝑏𝑘ᵆ
||||
= 𝑂(𝑞𝑘𝑛1−𝑐).
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Proof. First, note that

1
|𝑉| ∑𝑣∈𝑉

𝑎𝑘𝑣 = ∫
𝑞

0
𝑘𝑡𝑘−1(1 − 𝒜 ((−∞, 𝑡])) 𝑑𝑡 −∫

0

−𝑞
𝑘𝑡𝑘−1𝒜((−∞, 𝑡]) 𝑑𝑡

= ∫
𝑞

0
𝑘𝑡𝑘−1(1 − ℬ̂ ((−∞, 𝑡])) 𝑑𝑡 −∫

0

−𝑞
𝑘𝑡𝑘−1ℬ̂((−∞, 𝑡]) 𝑑𝑡 ± 𝑂(𝑞𝑘𝑛−𝑐)

= 1
|𝑈| ∑ᵆ∈𝑈

𝑏𝑘ᵆ ± 𝑂(𝑞𝑘𝑛−𝑐).

The desired result now follows from the fact that |𝑉| = (1 ± 𝑂(𝑛−𝑐))|𝑈|. □

We are now ready for the proof of Lemma 4.9.

Proof of Lemma 4.9. We shall estimate the probabilities in question using
Proposition A.1. Indeed, the hypothesis in the statement of Lemma 4.9, in the lan-
guage of Proposition A.1, may be stated as

• |𝛽𝑤| = 𝑂(√log 𝑛) (and hence |𝛽𝑤| ≤ log 𝑛) for each 𝑤 ∈ 𝑊 ,
• |∑𝑤∈𝑇 𝛽𝑤| = 𝑂(𝑛) for all 𝑇 ⊆ 𝑊 , and
• ∑𝑤∈𝑊 𝛽2𝑤 = 𝑂(𝑛),

whence it is clear that Proposition A.1 applies.
For part (1) of Lemma 4.9, we may argue as follows. If |𝑡 − ℎ/2| > 𝑛3/5, then (A.1)

gives us what we need. If |𝑡 − ℎ/2| ≤ 𝑛3/5, we claim that (A.2) implies the bound in
part (1) of Lemma 4.9. To see this, it suffices to verify in this regime that each of |Λ1|,
|Λ2|, |Λ3| and |Λ4| is 𝑂(|𝜏| + √log 𝑛), where 𝜏 is defined by 𝑡 = ℎ/2 + 𝜏√𝑛.
Using the facts that |∑𝑖∈𝑊 𝛽𝑖| = 𝑂(𝑛) and∑𝑖∈𝑊 𝛽2𝑖 = 𝑂(𝑛), we may bound |Λ1| by

|Λ1| =
||||
1
2𝑛2 (∑𝑖∈𝑊

𝛽𝑖) (∑
𝑖∈𝑊

𝛽𝑖 − 2𝑛𝛽𝑣)
||||

≤ 1
2𝑛2 (∑𝑖∈𝑊

𝛽𝑖)
2

+ |𝛽𝑣|
𝑛

||||
∑
𝑖∈𝑊

𝛽𝑖
||||

= 𝑂(1) + 𝑂(|𝛽𝑣|) = 𝑂 (√log 𝑛) .

Next, we bound |Λ2| using the facts that ℎ, 𝑛 − ℎ = Ω(𝑛), |∑𝑖∈𝑆⧵𝑣 𝛽𝑖| = 𝑂(𝑛) and
|∑𝑖∈𝑆c⧵𝑣 𝛽𝑖| = 𝑂(𝑛) by

|Λ2| ≤
||||
∑

𝑖∈𝑆⧵𝑣
(1 − 2𝑡

ℎ )
𝛽𝑖

√𝑛 − 1

||||
+
||||
∑

𝑖∈𝑆c⧵𝑣
(1 − 2(𝑑𝑣 − 𝑡)

(𝑛 − ℎ) )
𝛽𝑖

√𝑛 − 1

||||

≤ 𝑂 (|𝜏|/𝑛)
||||
∑

𝑖∈𝑆⧵𝑣
𝛽𝑖
||||
+ 𝑂 (|𝜏|/𝑛 + √log 𝑛/𝑛)

||||
∑

𝑖∈𝑆c⧵𝑣
𝛽𝑖
||||

= 𝑂(|𝜏| + √log 𝑛).

Finally, since ∑𝑖∈𝑊 𝛽2𝑖 = 𝑂(𝑛), it is immediate that |Λ3| = 𝑂(1), and it follows from
the facts that ∑𝑖∈𝑊 𝛽2𝑖 = 𝑂(𝑛), |∑𝑖∈𝑆⧵𝑣 𝛽𝑖| = 𝑂(𝑛) and |∑𝑖∈𝑆c⧵𝑣 𝛽𝑖| = 𝑂(𝑛) that
|Λ4| = 𝑂(1) as well.
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For part (2) of Lemma 4.9, it is sufficient to verify that the expression in (A.2) is
polynomially-stable when the parameters in question vary by the amounts specified in
the statement of Lemma 4.9; here, we say that an expression is polynomially-stable if it
varies by at most a multiplicative factor of 1 ± 𝑛−Ω(1). This may be done term by term,
as we outline below.
Suppose (𝑑′𝑤)𝑤∈𝑊 ′ , |𝑊 ′| = 𝑛′, 𝑣′ ∈ 𝑊 ′, 𝑆′ ⊆ 𝑊 ′, |𝑆′| = ℎ′ and 𝑡′ satisfy the

hypothesis in the statement of the lemma, and additionally, are such that
• |𝑡 − 𝑡′|, |𝑑𝑣 − 𝑑′𝑣′ | ≤ 𝑛1/2−Ω(1),
• (𝑑𝑤)𝑤∈𝑆 and (𝑑′𝑤)𝑤∈𝑆′ are proximate, and
• (𝑑𝑤)𝑤∈𝑊⧵𝑆 and (𝑑′𝑤)𝑤∈𝑊 ′⧵𝑆′ are proximate.
• |𝑛−𝑛′|, |ℎ−ℎ′| ≤ 𝑛1−Ω(1), this being a consequence of the previous two points.

In the regime where ℎ, 𝑛 − ℎ = Ω(𝑛), 𝑑 = 𝑛/2 ± 𝑂(√𝑛 log 𝑛), 𝑡 = ℎ/2 ± 𝑂(√𝑛 log 𝑛),
the expression

(ℎ𝑡)(
𝑛 − ℎ − 1
𝑑 − 𝑡 )(𝑛 − 1

𝑑 )
−1

is polynomially-stable when 𝑛 and ℎ vary by 𝑛1−Ω(1), and 𝑑 and 𝑡 vary by 𝑛1/2−Ω(1),
which in particular tells us that

(ℎ𝑡)(
𝑛 − ℎ − 1
𝑑𝑣 − 𝑡 )(𝑛 − 1

𝑑𝑣
)
−1

≃ (ℎ
′

𝑡′ )(
𝑛′ − ℎ′ − 1
𝑑′𝑣′ − 𝑡′ )(𝑛

′ − 1
𝑑′𝑣′

)
−1

.

This can be seen via a careful (and rather tedious) application of Stirling’s approxi-
mation, or alternately, by using a sufficiently precise form of the de Moivre–Laplace
normal approximation, as in [40] for example.
Next, we need to verify that each of exp(Λ1), exp(−Λ2), exp(−Λ3) and exp(Λ4) is

similarly polynomially-stable, and thismay be accomplished in a straightforwardman-
ner using Lemma A.2. To illustrate, we spell out the details for exp(−Λ3) below.
Recall that

Λ3 =
1
2 ∑
𝑖∈𝑊⧵𝑣

𝛽2𝑖
𝑛 − 1 =

1
2 ∑
𝑖∈𝑊

𝛽2𝑖
𝑛 − 1 ± 𝑂(log 𝑛/𝑛).

Our goal is to show, with 𝛽′𝑖 defined by 𝑑′𝑖 = (𝑛′−1)/2+𝛽′𝑖√(𝑛′ − 1)/2 for 𝑖 ∈ 𝑊 ′, that

Λ′
3 =

1
2 ∑
𝑖∈𝑊 ′⧵𝑣′

(𝛽′𝑖)2
𝑛′ − 1 =

1
2 ∑
𝑖∈𝑊 ′

(𝛽′𝑖)2
𝑛′ − 1 ± 𝑂(log 𝑛/𝑛)

is close enough to Λ3 to ensure exp(−Λ3) ≃ exp(−Λ′
3).

Since (𝑑𝑤)𝑤∈𝑆 and (𝑑′𝑤)𝑤∈𝑆′ are proximate, we claim that

||||
∑
𝑖∈𝑆

𝛽2𝑖 − ∑
𝑖∈𝑆′

(𝛽′𝑖)2
||||
≤ 𝑛1−Ω(1).

This is true with room to spare if the two sequences are proximate on account of the
first part of Definition 4.8, since in this case, we know that

∑
𝑖∈𝑆

||𝛽𝑖 − 𝛽′𝜓(𝑖)|| = 𝑂(√𝑛)
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for some bijection 𝜓 ∶ 𝑆 → 𝑆′, from which it follows that
||||
∑
𝑖∈𝑆

𝛽2𝑖 − ∑
𝑖∈𝑆′

(𝛽′𝑖)2
||||
≤ (max

𝑖∈𝑆
||𝛽𝑖 + 𝛽′𝜓(𝑖)||) (∑

𝑖∈𝑆
||𝛽𝑖 − 𝛽′𝜓(𝑖)||) = 𝑂(√𝑛 log 𝑛).

If the two sequences are proximate on account of the second part of Definition 4.8, then
since |𝑛 − 𝑛′| ≤ 𝑛1−Ω(1), it is easily checked that the Kolmogorov distance between the
uniform measures on (𝛽𝑖)𝑖∈𝑆 and (𝛽′𝑖)𝑖∈𝑆′ is at most 𝑛−Ω(1), so by Lemma A.2 (with
𝑘 = 2 and 𝑞 = log 𝑛), we have

||||
∑
𝑖∈𝑆

𝛽2𝑖 − ∑
𝑖∈𝑆′

(𝛽′𝑖)2
||||
≤ 𝑛1−Ω(1)

as claimed. Reasoning similarly about the proximate pair (𝑑𝑤)𝑤∈𝑊⧵𝑆 and (𝑑′𝑤)𝑤∈𝑊 ′⧵𝑆′ ,
we deduce that

||||
∑

𝑖∈𝑊⧵𝑆
𝛽2𝑖 − ∑

𝑖∈𝑊 ′⧵𝑆′
(𝛽′𝑖)2

||||
≤ 𝑛1−Ω(1)

aswell. Putting these pairs of estimates together shows that |Λ3−Λ′
3| ≤ 𝑛−Ω(1), whence

it is clear that exp(−Λ3) ≃ exp(−Λ′
3).

The details in the other three cases (i.e., forΛ1, Λ2 andΛ4) are similar, and we leave
them to the reader. □

Proposition A.1 is a consequence of the followingmore general statement, the proof
of which will be given in Appendix C once we have collected the requisite machinery
in Appendix B.

Proposition A.3. Let (𝑑𝑤)𝑤∈𝑊 be a sequence with even sum on a set 𝑊 of 𝑛 vertices
such that, defining 𝛽𝑤 by 𝑑𝑤 = (𝑛 − 1)/2 + 𝛽𝑤√(𝑛 − 1)/2, we have |𝛽𝑤| ≤ log 𝑛 for
each 𝑤 ∈ 𝑊 . Such a sequence is a graphic sequence for all sufficiently large 𝑛. Let 𝐺 be
a uniformly random graph with this degree sequence on the vertex set𝑊 . For any fixed
𝑣 ∈ 𝑊 , 𝑆 ⊆ 𝑊 of sizeℎ satisfyingmin(ℎ, 𝑛−ℎ) ≥ 𝑛/(log 𝑛)1/8, and an integer 𝑡 ∈ [0, 𝑑𝑣],
we have

ℙ(deg𝑆(𝑣) = 𝑡) = (1 ± 𝑂(𝑛−1/6))
(ℎ−𝟙𝑆(𝑣)𝑡 )(𝑛−ℎ−𝟙𝑆c (𝑣)𝑑𝑣−𝑡

)
(𝑛−1𝑑𝑣

)
exp(Λ1 − Λ3)𝔼𝑇 [exp(−Λ𝑇)] ,

where 𝑇 = 𝑇1 ∪ 𝑇2 is a random set chosen by picking 𝑇1 uniformly from (𝑆⧵𝑣𝑡 ) and 𝑇2
uniformly from (𝑆c⧵𝑣𝑑𝑣−𝑡

), and where Λ1, Λ3 and Λ𝑇 are given by

Λ1 =
1
2𝑛2 (∑𝑖∈𝑊

𝛽𝑖) (∑
𝑖∈𝑊

𝛽𝑖 − 2𝑛𝛽𝑣) ,

Λ3 =
1
2 ∑
𝑖∈𝑊⧵𝑣

𝛽2𝑖
𝑛 − 1, and

Λ𝑇 = ∑
𝑖∈𝑊⧵𝑣

(−1)𝟙𝑇 (𝑖) 𝛽𝑖
√𝑛 − 1

.

To proceed, we will need to understand expressions as appearing on the right side
of Proposition A.3. To this end, we state two general results about sums of random
variables constrained to live on a ‘slice’ of the Boolean hypercube.
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Lemma A.4. Let 𝑎1, . . . , 𝑎𝑛 ∈ ℝ, 𝑠 ∈ [0, 𝑛] be an integer and let 𝑋 = ∑𝑛
𝑖=1 𝑎𝑖𝜉𝑖, where

𝜉 = (𝜉1, . . . , 𝜉𝑛) is uniform on the subset of binary vectors in {0, 1}𝑛 which have sum 𝑠.
Writing 𝜂2 = ∑𝑛

𝑖=1 𝑎2𝑖 − (∑𝑛
𝑖=1 𝑎𝑖)2/𝑛, we have

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝑡) ≤ 2 exp(−𝑡2/(4𝜂2))
and

𝔼 [𝑒𝑋−𝔼[𝑋]] ≤ 2𝑒𝑂(𝜂2).

Proof. The first part follows from the Azuma–Hoeffding inequality, as outlined in [23,
Lemma 2.2], for example. The second part follows from integrating the first; see [38,
Proposition 2.5.2]. □

Lemma A.5. Let 𝑎1, . . . , 𝑎𝑛 ∈ ℝ, 𝑠 be an integer with min(𝑠, 𝑛 − 𝑠) ≥ 𝑛(log 𝑛)−2, and
let 𝑋 = ∑𝑛

𝑖=1 𝑎𝑖𝜉𝑖, where 𝜉 = (𝜉1, . . . , 𝜉𝑛) is uniform on the subset of {0, 1}𝑛 with sum 𝑠.
Suppose that |𝑎𝑖| ≤ 𝑛−1/2(log 𝑛)2 and 𝜂2 = ∑𝑛

𝑖=1 𝑎2𝑖 − (∑𝑛
𝑖=1 𝑎𝑖)2/𝑛 ≤ √log 𝑛. Then we

have
𝔼 [𝑒𝑋] = exp(𝔼[𝑋] + 1

2 Var[𝑋] ± 𝑂(𝑛−1/9)) .

Proof. Writing 𝜎2 = Var[𝑋], we clearly have
𝜎2 = ∑

𝑖≠𝑗
𝑎𝑖𝑎𝑗(𝔼[𝜉𝑖𝜉𝑗] − 𝔼[𝜉𝑖]𝔼[𝜉𝑗]) +∑

𝑖
𝑎2𝑖 (𝔼[𝜉2𝑖 ] − 𝔼[𝜉𝑖]2)

= ∑
𝑖≠𝑗

𝑎𝑖𝑎𝑗 (
𝑠(𝑠 − 1)
𝑛(𝑛 − 1) −

𝑠2
𝑛2 ) +∑

𝑖
𝑎2𝑖 (

𝑠
𝑛 −

𝑠2
𝑛2 ) =

𝑠(𝑛 − 𝑠)
𝑛(𝑛 − 1)𝜂

2.

First, by Lemma A.4, we have

ℙ[|𝑋 − 𝔼[𝑋]| ≥ 𝑡] ≤ 2 exp(−𝑡2/(4𝜂2))
for all 𝑡 ≥ 0. Now

𝔼 [𝑒𝑋−𝔼[𝑋]] = ∫
∞

−∞
𝑒𝑡ℙ(𝑋 − 𝔼[𝑋] ≥ 𝑡) 𝑑𝑡

= ∫
8𝜂√log𝑛

−∞
𝑒𝑡ℙ(𝑋 − 𝔼[𝑋] ≥ 𝑡) 𝑑𝑡 + 𝑂 (∫

∞

8𝜂√log𝑛
𝑒𝑡−𝑡2/(4𝜂2) 𝑑𝑡)

= ∫
8𝜂√log𝑛

−∞
𝑒𝑡ℙ(𝑋 − 𝔼[𝑋] ≥ 𝑡) 𝑑𝑡 + 𝑂 (∫

∞

8𝜂√log𝑛
𝑒−𝑡2/(8𝜂2) 𝑑𝑡)

= ∫
8𝜂√log𝑛

−∞
𝑒𝑡ℙ(𝑋 − 𝔼[𝑋] ≥ 𝑡) 𝑑𝑡 + 𝑂(𝑛−4).

If 𝜎 ≤ 𝑛−1/8, then 𝜂 = (𝑛(𝑛 − 1)/(𝑠(𝑛 − 𝑠)))1/2𝜎 ≤ 𝑛−2/17 and therefore we obtain the
upper bound𝔼[𝑒𝑋−𝔼[𝑋]] ≤ 1+𝑂(𝑛−1/9). Combiningwith𝔼𝑒𝑋 ≥ 𝑒𝔼𝑋 , the result follows.
If 𝜎 > 𝑛−1/8, then a combinatorial central limit theorem of Bolthausen [11] (applied to
the 𝑛 × 𝑛matrix in which the first 𝑠 rows are copies of the vector (𝑎1, . . . , 𝑎𝑛), and the
last 𝑛 − 𝑠 rows are zero) shows that

dK(𝑋 − 𝔼[𝑋],𝒩(0, 𝜎2)) = 𝑂 (
𝑛
∑
𝑖=1

|𝑎𝑖|3/𝜎3) = 𝑂(𝑛−2/17).
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This allows us the replace the integrand above with the cumulative distribution func-
tion of a Gaussian, and we easily derive

𝔼 [𝑒𝑋−𝔼[𝑋]] = 𝑒
𝜍2
2 ± 𝑂 (𝑛−2/17𝑒8𝜂√log𝑛) = exp(𝜎2/2 ± 𝑂(𝑛−1/9)). □

Proposition A.1 is now easily deduced from Proposition A.3.

Proof of Proposition A.1. With𝑇 = 𝑇1∪𝑇2 a random set chosen by picking𝑇1 uniformly
from (𝑆⧵𝑣𝑡 ) and 𝑇2 uniformly from (𝑆c⧵𝑣𝑑𝑣−𝑡

), we have

𝔼𝑇 [Λ𝑇 ] = 𝔼𝑇 [ ∑
𝑖∈𝑊⧵𝑣

(−1)𝟙𝑇 (𝑖) 𝛽𝑖
√𝑛 − 1

]

= ∑
𝑖∈𝑆⧵𝑣

(1 − 2𝑡
ℎ )

𝛽𝑖
√𝑛 − 1

+ ∑
𝑖∈𝑆c⧵𝑣

(1 − 2(𝑑𝑣 − 𝑡)
(𝑛 − ℎ) )

𝛽𝑖
√𝑛 − 1

± 𝑂(𝑛−1/3)

= Λ2 ± 𝑂(𝑛−1/3),

where the small additive error term comes from the fact that whether 𝑣 ∈ 𝑆 or 𝑣 ∈ 𝑆c
slightly change the fractions listed above, but not by much.
At this point, if |𝑡 − ℎ/2| > 𝑛3/5, we have

(ℎ−𝟙𝑆(𝑣)𝑡 )(𝑛−ℎ−𝟙𝑆c (𝑣)𝑑𝑣−𝑡
)

(𝑛−1𝑑𝑣
)

≤ exp(−Ω((𝑡 − ℎ/2)2/𝑛))

by a standard tail bound for the hypergeometric distribution (see [22, Theorem 2.10],
for example). Since |𝛽𝑤| ≤ log 𝑛 for each 𝑤 ∈ 𝑊 , clearly both |Λ1| and |Λ3| are
𝑂((log 𝑛)2), whence exp(Λ1 − Λ3) ≤ exp(𝑂((log 𝑛)4)), and we are left with estimat-
ing 𝔼[exp(−Λ𝑇)]. Now Lemma A.4 demonstrates

𝔼[exp(−Λ𝑇)] ≤ exp(𝔼[−Λ𝑇 ] + 𝑂((log 𝑛)2)),

since the coefficient variance in −Λ𝑇 is 𝑂((log 𝑛)2/𝑛) by the given conditions. The
above explicit expression for 𝔼[Λ𝑇 ] demonstrates that

|𝔼[−Λ𝑇 ]| = 𝑂 (|𝑡 − ℎ/2|(log 𝑛)2

√𝑛
)

when |𝑡 − ℎ/2| > 𝑛3/5. These estimates together immediately yield a bound of the
claimed quality.
From now on we assume |𝑡 − ℎ/2| ≤ 𝑛3/5. We next compute the variance of Λ𝑇 .

Following the computation in the proof of Lemma A.5, we see

Var[Λ𝑇 ] =
4

(𝑛 − 1)(
𝑡(ℎ − 𝑡)
ℎ(ℎ − 1)

∑𝑖,𝑗∈𝑆⧵𝑣(𝛽𝑖 − 𝛽𝑗)2

ℎ

+ (𝑑𝑣 − 𝑡)((𝑛 − ℎ) − (𝑑𝑣 − 𝑡))
(𝑛 − ℎ)(𝑛 − ℎ − 1)

∑𝑖,𝑗∈𝑆c⧵𝑣(𝛽𝑖 − 𝛽𝑗)2

𝑛 − ℎ ) + 𝑂(𝑛−1/4),

these sums being over all (unordered) two-element subsets; here, we again use the fact
that the fraction 𝑡/|𝑆 ⧵ 𝑣| is close to 𝑡/ℎ regardless of if 𝑣 ∈ 𝑆 or 𝑣 ∈ 𝑆c. Now using
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𝑡 = ℎ/2 ± 𝑛3/5 and 𝑑𝑣 = 𝑛/2 + 𝑂(√𝑛(log 𝑛)), we find

Var[Λ𝑇 ] =
1
𝑛ℎ ∑

𝑖,𝑗∈𝑆⧵𝑣
(𝛽𝑖 − 𝛽𝑗)2 +

1
𝑛(𝑛 − ℎ) ∑

𝑖,𝑗∈𝑆c⧵𝑣
(𝛽𝑖 − 𝛽𝑗)2 ± 𝑂(𝑛−1/4)

= 2Λ4 ± 𝑂(𝑛−1/4).

Note thatVar[Λ𝑇 ] ≤ ∑𝑛
𝑖=1 𝛽2𝑖 /min(ℎ, 𝑛−ℎ) = 𝑂(𝑛(log 𝑛)1/9/min(ℎ, 𝑛−ℎ)), and apply

Lemma A.5 to the two slices defining Λ𝑇 . Note that the condition 𝜂2 ≤ √log 𝑛 follows
from the inequalities (𝑛/ℎ)(log 𝑛)1/9 < √log 𝑛 and the relation between 𝜎2 and 𝜂2 in
the proof of Lemma A.5. Therefore

𝔼[exp(−Λ𝑇)] = exp(𝔼[−Λ𝑇 ] +
1
2 Var[Λ𝑇 ] ± 𝑂(𝑛−1/9))

= exp(−Λ2 + Λ4 ± 𝑂(𝑛−1/9)) .

Plugging this last estimate into Proposition A.3, we obtain

ℙ(deg𝑆(𝑣) = 𝑡) = (1 ± 𝑂(𝑛−1/10))
(ℎ𝑡)(

𝑛−ℎ−1
𝑑𝑣−𝑡

)
(𝑛−1𝑑𝑣

)
exp(Λ1 − Λ2 − Λ3 + Λ4),

as desired, using the fact that the product of binomials in question changes by a small
factor depending on whether 𝑣 ∈ 𝑆 or 𝑣 ∈ 𝑆c, a factor which is nonetheless subsumed
by the error term with room to spare. □

The proof of Lemma 4.10 is analogous to the argument above, so in this case, we
only record the appropriate intermediate results needed, and omit the details.
Lemma 4.10 may be deduced from the following result in the same fashion as

Lemma 4.9 was from Proposition A.1.

Proposition A.6. Let ((𝑑𝑣)𝑣∈𝑉 , (𝑑𝑤)𝑤∈𝑊 ) be a pair of sequences with identical sums on
a bipartition 𝑉 ∪ 𝑊 with |𝑉| = m, |𝑊| = 𝑛 such that, defining 𝛼𝑣 by 𝑑𝑣 = (𝑛 − 1)/2 +
𝛼𝑣√(𝑛 − 1)/2 for 𝑣 ∈ 𝑉 and 𝛽𝑤 by 𝑑𝑤 = (𝑛 − 1)/2 + 𝛽𝑤√(𝑛 − 1)/2 for 𝑤 ∈ 𝑊 , we have

• (log 𝑛)−1/4 ≤ 𝑚/𝑛 ≤ (log 𝑛)1/4,
• |𝛼𝑣| ≤ log 𝑛 for each 𝑣 ∈ 𝑉 and |𝛽𝑤| ≤ log 𝑛 for each 𝑤 ∈ 𝑊 , and
• (𝑛/𝑚)∑𝑤∈𝑊 𝛽2𝑤 ≤ 𝑛(log 𝑛)1/9.

Then (𝑑𝑣)𝑣∈𝑉 , (𝑑𝑤)𝑤∈𝑊 are the degree sequences of the two parts of some bipartite graph
(assuming 𝑛 is sufficiently large). Let𝐺 be a uniformly random bipartite graph with these
degree sequences on the vertex set 𝑉 ∪ 𝑊 . Consider any fixed 𝑢 ∈ 𝑉 , any fixed subset
𝑆 ⊆ 𝑊 of size ℎ satisfying min(ℎ, 𝑛 − ℎ) ≥ 𝑛/(log 𝑛)1/8, and an integer 𝑡 ∈ [0, 𝑑ᵆ]. If
|𝑡 − ℎ/2| > 𝑛3/5, then we have

(A.3) ℙ(deg𝑆(𝑢) = 𝑡) ≤ exp(−Ω((𝑡 − ℎ/2)2/𝑛)).

If |𝑡 − ℎ/2| ≤ 𝑛3/5 on the other hand, then we have

(A.4) ℙ(deg𝑆(𝑢) = 𝑡) = (1 ± 𝑂(𝑛−1/10))
(ℎ𝑡)(

𝑛−ℎ
𝑑𝑢−𝑡

)
( 𝑛𝑑𝑢)

exp(Λ1 − Λ2 − Λ3 + Λ4),
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where Λ1, Λ2, Λ3 and Λ4 are given by

Λ1 =
1

2𝑚𝑛 (∑𝑖∈𝑊
𝛽𝑖) (∑

𝑖∈𝑊
𝛽𝑖 − 2√𝑚𝑛𝛼ᵆ) ,

Λ2 = ∑
𝑖∈𝑆

(1 − 2𝑡
ℎ )

𝛽𝑖
√𝑚

+ ∑
𝑖∈𝑊⧵𝑆

(1 − 2(𝑑𝑣 − 𝑡)
(𝑛 − ℎ) )

𝛽𝑖
√𝑚

,

Λ3 =
1
2 ∑
𝑖∈𝑊

𝛽2𝑖
𝑚 , and

Λ4 =
1

2𝑚ℎ ∑
𝑖,𝑗∈𝑆

(𝛽𝑖 − 𝛽𝑗)2 +
1

2𝑚(𝑛 − ℎ) ∑
𝑖,𝑗∈𝑊⧵𝑆

(𝛽𝑖 − 𝛽𝑗)2,

the sums in the definition of Λ4 being over all (unordered) two-element subsets.

Asbefore, PropositionA.6 itself is a consequence of the following result, whose proof
will be sketched in Appendix C once we have collected the requisite machinery in Ap-
pendix B.

Proposition A.7. Let ((𝑑𝑣)𝑣∈𝑉 , (𝑑𝑤)𝑤∈𝑊 ) be a pair of sequences of identical sums on a
bipartition 𝑉 ∪ 𝑊 with |𝑉| = m, |𝑊| = 𝑛 such that, defining 𝛼𝑣 by 𝑑𝑣 = (𝑛 − 1)/2 +
𝛼𝑣√(𝑛 − 1)/2 for 𝑣 ∈ 𝑉 and 𝛽𝑤 by 𝑑𝑤 = (𝑛 − 1)/2 + 𝛽𝑤√(𝑛 − 1)/2 for 𝑤 ∈ 𝑊 , we have

• (log 𝑛)−1/4 ≤ 𝑚/𝑛 ≤ (log 𝑛)1/4,
• |𝛼𝑣| ≤ log 𝑛 for each 𝑣 ∈ 𝑉 and |𝛽𝑤| ≤ log 𝑛 for each 𝑤 ∈ 𝑊 .

Then (𝑑𝑣)𝑣∈𝑉 , (𝑑𝑤)𝑤∈𝑊 are the degree sequences of the two parts of some bipartite graph
(assuming 𝑛 is sufficiently large). Let𝐺 be a uniformly random bipartite graph with these
degree sequences on the vertex set 𝑉 ∪𝑊 . For any fixed 𝑢 ∈ 𝑉 , 𝑆 ⊆ 𝑊 of size ℎ satisfying
min(ℎ, 𝑛 − ℎ) ≥ 𝑛/(log 𝑛)1/8, and an integer 𝑡 ∈ [0, 𝑑ᵆ], we have

ℙ(deg𝑆(𝑢) = 𝑡) = (1 ± 𝑂(𝑛−1/8))
(ℎ𝑡)(

𝑛−ℎ
𝑑𝑢−𝑡

)
( 𝑛𝑑𝑢)

exp(Λ1 − Λ3)𝔼𝑇 [exp(−Λ𝑇)] ,

where 𝑇 = 𝑇1 ∪ 𝑇2 is a random set chosen by picking 𝑇1 uniformly from (𝑆𝑡) and 𝑇2 uni-
formly from (𝑊⧵𝑆

𝑑𝑢−𝑡
), and where Λ1, Λ3 and Λ𝑇 are given by

Λ1 =
1

2𝑚𝑛 (∑𝑖∈𝑊
𝛽𝑖) (∑

𝑖∈𝑊
𝛽𝑖 − 2√𝑚𝑛𝛼ᵆ) ,

Λ3 =
1
2 ∑
𝑖∈𝑊

𝛽2𝑖
𝑚 , and

Λ𝑇 = ∑
𝑖∈𝑊

(−1)𝟙𝑇 (𝑖) 𝛽𝑖
√𝑚

.

Appendix B. Graph enumeration results and related estimates

Themain tools needed to prove PropositionsA.3 andA.7 are the following enumera-
tion theorems ofMcKay andWormald [27] and of Canfield, Greenhill, andMcKay [12].

TheoremB.1. There exists a fixed constant 𝜀 > 0 such that the following holds. Consider
a sequence 𝐝 = (𝑑1, . . . , 𝑑𝑛) with even sum such that, writing 𝑑 = (1/𝑛)∑𝑛

𝑖=1 𝑑𝑖, we have
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• |𝑑𝑖 − 𝑑| ≤ 𝑛1/2+𝜀 for 1 ≤ 𝑖 ≤ 𝑛, and
• 𝑑 ≥ 𝑛/ log 𝑛.

Writing𝑚 = 𝑑𝑛/2 ∈ ℤ, 𝜇 = 𝑑/(𝑛− 1), and 𝛾22 = (1/(𝑛− 1)2)∑𝑛
𝑖=1(𝑑𝑖 −𝑑)2, the number

of labelled graphs with degree sequence 𝐝 is

(1 ± 𝑂(𝑛−1/4)) exp(14 −
𝛾22

4𝜇2(1 − 𝜇)2 ) (
𝑛(𝑛 − 1)/2

𝑚 )(𝑛(𝑛 − 1)
2𝑚 )

−1 𝑛
∏
𝑖=1

(𝑛 − 1
𝑑𝑖

).

Theorem B.2. There exists a fixed constant 𝜀 > 0 such that the following holds. Con-
sider a pair of sequences (𝐬 = (𝑠1, . . . , 𝑠𝑛), 𝐭 = (𝑡1, . . . , 𝑡𝑚)) with identical sums such that,
writing 𝑠 = (1/𝑛)∑𝑛

𝑖=1 𝑠𝑖 and 𝑡 = (1/𝑚)∑𝑚
𝑖=1 𝑡𝑖, we have

• 𝑛/(log 𝑛)1/2 ≤ 𝑚 ≤ 𝑛(log 𝑛)1/2,
• |𝑠𝑖 − 𝑠| ≤ 𝑛1/2+𝜀 for 1 ≤ 𝑖 ≤ 𝑛 and |𝑡𝑖 − 𝑡| ≤ 𝑚1/2+𝜀 for 1 ≤ 𝑖 ≤ 𝑚, and
• 𝑠 ≥ 𝑛/(log 𝑛)1/2 and 𝑡 ≥ 𝑚/(log𝑚)1/2.

Writing 𝜇 = ∑𝑛
𝑖=1 𝑠𝑖/(𝑚𝑛) = ∑𝑚

𝑖=1 𝑡𝑖/(𝑚𝑛), 𝛾2(𝐬)2 = (1/(𝑚𝑛))∑𝑛
𝑖=1(𝑠𝑖 − 𝑠)2 and

𝛾2(𝐭)2 = (1/(𝑚𝑛))∑𝑚
𝑖=1(𝑡𝑖 − 𝑡)2, the number of labelled bipartite graphs whose partition

classes have degree sequences 𝐬 and 𝐭 is

(1 ± 𝑂(𝑛−1/8)) exp(−12 (1 −
𝛾2(𝐬)2
𝜇(1 − 𝜇)) (1 −

𝛾2(𝐭)2
𝜇(1 − 𝜇))) (

𝑚𝑛
𝑚𝑛𝜇)

−1 𝑛
∏
𝑖=1

(𝑚𝑠𝑖
)

𝑚
∏
𝑖=1

(𝑛𝑡𝑖
).

We remark that these enumeration results are now known to hold under even
broader conditions on the degree sequences (i.e., 𝐝, 𝐬 and 𝐭) due to works of Barvi-
nok and Hartigan [6], and for essentially all sparsities by recent work of Liebenau and
Wormald [24, 25]. We refer the reader to [39] for an excellent survey of these results.
In order to estimate the expressions in Theorems B.1 and B.2, we shall also require

the following estimates for binomial coefficients. These follow from sufficiently precise
versions of Stirling’s approximation for the factorial. These estimates are nonetheless
somewhat non-standard, and so we include proofs, following the exceptionally clean
approach in [33].

Lemma B.3. We have the following pair of estimates.
(1) For integers 𝑒,𝑚, 𝑑 ∈ ℕ, let Δ1 = 𝑒 − 𝑚(𝑚 − 1)/4 and Δ2 = (𝑚 − 1)/2 − 𝑑. If

|Δ1| = 𝑂(𝑚3/2) and |Δ2| = 𝑂(√𝑚 log𝑚), then

(𝑚(𝑚−1)/2
𝑒 )(𝑚(𝑚−1)

2𝑒 )
−1

((𝑚−1)(𝑚−2)/2
𝑒−𝑑 )((𝑚−1)(𝑚−2)

2𝑒−2𝑑 )
−1 = (1 ± 𝑂(𝑚−2/5))2−(𝑚−1) exp(−8(Δ21 + Δ1Δ2𝑚)/𝑚3).

(2) For integers 𝑒,𝑚, 𝑑, 𝑛 ∈ ℕ, letΔ1 = 𝑒−𝑚𝑛/2andΔ2 = 𝑛/2−𝑑. If |Δ1| ≤ 𝑂(𝑚3/2),
|Δ2| ≤ 𝑂(√𝑚 log𝑚), and𝑚 = Θ(𝑛), then

(𝑚𝑛𝑒 )
−1

((𝑚 − 1)𝑛
𝑒 − 𝑑 ) = (1 ± 𝑂(𝑚−2/5))2−𝑛 exp(−2(2𝑚Δ1Δ2 + Δ21)/(𝑚2𝑛)).

Proof. We start with an auxiliary estimate. Consider any 𝑁, 𝑖 satisfying |𝑖| ≤ 𝑁4/5; we
claim that

(B.1) ( 𝑁
(𝑁 + 𝑖)/2) = ( 𝑁

𝑁/2)(1 − 𝑖2/(2𝑁) − 𝑖4/(12𝑁3) ± 𝑂(𝑁−1/5)).
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Indeed, note that

( 𝑁
(𝑁 + 𝑖)/2)(

𝑁
𝑁/2)

−1

=
𝑖/2
∏
𝑗=1

𝑁/2 − 𝑗 + 1
𝑁/2 + 𝑗 =

𝑖/2
∏
𝑗=1

𝑁/2 − 𝑗
𝑁/2 + 𝑗

𝑖/2
∏
𝑗=1

𝑁/2 − 𝑗 + 1
𝑁/2 − 𝑗 .

The final product on the right hand side is (1 ± 𝑂(𝑁−1/5)). For the first of the two
products on the right hand side, note that

𝑖/2
∑
𝑗=1

log((𝑁/2 − 𝑗)/(𝑁/2 + 𝑗)) =
𝑖/2
∑
𝑗=1

−4𝑗/𝑁 − 2(2𝑗/𝑁)3/3 ± 𝑂(𝑁−1/5)

= −𝑖2/(2𝑁) − 𝑖4/(12𝑁3) ± 𝑂(𝑁−1/5),
proving (B.1).
Now, for (1), we have Δ1 = 𝑒 −𝑚(𝑚− 1)/4 and Δ2 = (𝑚− 1)/2 − 𝑑. Applying (B.1)

to each term, we find that

(𝑚(𝑚−1)/2
𝑒 )(𝑚(𝑚−1)

2𝑒 )
−1

((𝑚−1)(𝑚−2)/2
𝑒−𝑑 )((𝑚−1)(𝑚−2)

2𝑒−2𝑑 )
−1 = (1 ± 𝑂(𝑚−2/5))2−(𝑚−1) exp(−8(Δ21 + Δ1Δ2𝑚)/𝑚3),

proving (1). (Note that in each application of (B.1) we have 𝑁 = Θ(𝑚2)).
For (2), we have Δ1 = 𝑒 − 𝑚𝑛/2 and Δ2 = 𝑛/2 − 𝑑. Then note that

(𝑚𝑛𝑒 )
−1

((𝑚 − 1)𝑛
𝑒 − 𝑑 ) = (1 ± 𝑂(𝑚−2/5))2−𝑛 exp(−2(2𝑚Δ1Δ2 + Δ21)/(𝑚2𝑛)),

which proves (2). □

Appendix C. Proofs of the main technical estimates

With the results in Appendix B in hand, we are now ready to prove Propositions A.3
and A.7. We start with Proposition A.3.

Proof of Proposition A.3. Given 𝐝 = (𝑑𝑤)𝑤∈𝑊 , 𝑣 ∈ 𝑊 and 𝑇 ⊆ 𝑊 ⧵ 𝑣 of size 𝑑𝑣, we
shall estimate the probability of the neighbourhood of 𝑣 in 𝐺 being exactly 𝑇.
To this end, let 𝐝𝑇 = (𝑑𝑤 − 𝟙𝑇(𝑤))𝑤∈𝑊 . As in Theorem B.1, let

𝑑 = 1
𝑛 ∑

𝑖∈𝑊
𝑑𝑖, 𝑑𝑇 =

1
𝑛 − 1 ∑

𝑖∈𝑊⧵𝑣
(𝑑𝑖 − 𝟙𝑇(𝑖)) =

𝑛𝑑 − 2𝑑𝑣
𝑛 − 1 ,

𝑟 = 𝑑𝑛
2 , 𝑟𝑇 =

𝑑𝑇(𝑛 − 1)
2 = 𝑟 − 𝑑𝑣,

𝜇 = 𝑑
𝑛 − 1, 𝜇𝑇 =

𝑑𝑇
𝑛 − 2 =

𝑛
𝑛 − 2𝜇 −

2𝑑𝑣
(𝑛 − 1)(𝑛 − 2) ,

𝛾22 =
1

(𝑛 − 1)2 ∑
𝑖∈𝑊

(𝑑𝑖 − 𝑑)2, 𝛾22 (𝑇) =
1

(𝑛 − 2)2 ∑
𝑖∈𝑊⧵𝑣

(𝑑𝑇,𝑖 − 𝑑𝑇)2.

Note that 𝐝 and 𝐝𝑇 both clearly satisfy the conditions of Theorem B.1 due to our
hypotheses, and that

𝛾22 (𝑇) = 𝛾22 ± 𝑂(𝑛−1/4) and 𝜇𝑇 = 𝜇 ± 𝑂(1/𝑛),
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again, from the given hypotheses. Now define

Φ =
((𝑛−1)(𝑛−2)/2𝑟−𝑑𝑣

)((𝑛−1)(𝑛−2)2𝑟−2𝑑𝑣
)
−1

(𝑛(𝑛−1)/2𝑟 )(𝑛(𝑛−1)2𝑟 )
−1 2−(𝑛−1)

and recall 𝑑𝑖 = (𝑛 − 1)/2 + 𝛽𝑖√(𝑛 − 1)/2. We have

𝑟 − 1
2(
𝑛
2) =

1
2 ∑
𝑖∈𝑊

(𝑑𝑖 − (𝑛 − 1)/2) = √(𝑛 − 1)
4 ∑

𝑖∈𝑊
𝛽𝑖.

From our hypotheses and the first estimate in Lemma B.3, we then deduce that

Φ = exp(
(∑𝑖∈𝑊 𝛽𝑖)(∑𝑖∈𝑊 𝛽𝑖 − 2𝑛𝛽𝑛)

2𝑛2 ± 𝑂(𝑛−1/6))

= exp(Λ1 ± 𝑂(𝑛−1/6)).

The above estimates for 𝛾22 (𝑇) and 𝜇𝑇 imply that

exp( 14 −
𝛾22(𝑇)

4𝜇2𝑇 (1−𝜇𝑇 )2
)

exp( 14 −
𝛾22

4𝜇2(1−𝜇)2 )
= 1 ± 𝑂(𝑛−1/4),

and this fact in conjunction with Theorem B.1 yields

ℙ[𝑁(𝑣) = 𝑇] = (1 ± 𝑂(𝑛−1/4))
((𝑛−1)(𝑛−2)/2𝑟𝑇

)((𝑛−1)(𝑛−2)2𝑟𝑇
)
−1
∏𝑖∈𝑊⧵𝑣 (

𝑛−2
𝑑𝑖−𝟙𝑇 (𝑖)

)

(𝑛(𝑛−1)/2𝑟 )(𝑛(𝑛−1)2𝑟 )
−1
∏𝑖∈𝑊 (𝑛−1𝑑𝑖

)

= (1 ± 𝑂(𝑛−1/4))Φ2
𝑛−1

(𝑛−1𝑑𝑣
)
∏
𝑖∈𝑇

𝑑𝑖
𝑛 − 1∏𝑖∉𝑇

𝑛 − 1 − 𝑑𝑖
𝑛 − 1

= (1 ± 𝑂(𝑛−1/4)) Φ
(𝑛−1𝑑𝑣

)
∏
𝑖∈𝑇

(1 + 𝛽𝑖
√𝑛 − 1

)∏
𝑖∉𝑇

(1 − 𝛽𝑖
√𝑛 − 1

)

= Φ
(𝑛−1𝑑𝑣

)
exp(− ∑

𝑖∈𝑊⧵𝑣
(−1)𝟙𝑇 (𝑖) 𝛽𝑖

√𝑛 − 1
− 1
2 ∑
𝑖∈𝑊⧵𝑣

𝛽2𝑖
𝑛 − 1 ± 𝑂(𝑛−1/4))

= Φ
(𝑛−1𝑑𝑣

)
exp(−Λ𝑇 − Λ3 ± 𝑂(𝑛−1/4)) .

Since the above estimate holds for every choice of 𝑇 ⊆ 𝑊 ⧵ 𝑣, we may finish by
noting that

(1 ± 𝑂(𝑛−1/4))
(𝑛−1𝑑𝑣

)
Φ(ℎ−𝟙𝑆(𝑣)𝑡 )(𝑛−ℎ−𝟙𝑆c (𝑣)𝑑𝑣−𝑡

)
ℙ[deg𝑆(𝑣) = 𝑡] = exp(−Λ3)𝔼𝑇 [exp(−Λ𝑇)],

where 𝑇 = 𝑇1 ∪ 𝑇2 is a random set chosen by picking 𝑇1 uniformly from (𝑆𝑡) and 𝑇2
uniformly from (𝑊⧵𝑆

𝑑𝑣−𝑡
). Rearranging this, and recalling that Φ = exp(Λ1 ± 𝑂(𝑛−1/6)),

gives us the desired result. □

To finish, we outline the proof of Proposition A.7.
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Proof of Proposition A.7. The proof of this proposition mirrors that of Proposition A.3,
except now using Theorem B.2 instead of Theorem B.1, and the second estimate in
Lemma B.3 instead of the first. Since the requisite calculations are routine (and are
analogous to those spelled out in the proof of Proposition A.3), we leave the details of
these calculations to the reader. □
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