First order rigidity of homeomorphism groups of manifolds
HTML articles powered by AMS MathViewer
- by Sang-hyun Kim, Thomas Koberda and J. de la Nuez González;
- Comm. Amer. Math. Soc. 5 (2025), 144-194
- DOI: https://doi.org/10.1090/cams/47
- Published electronically: May 12, 2025
- HTML | PDF
Abstract:
For every compact, connected manifold $M$, we prove the existence of a sentence $\phi _M$ in the language of groups such that the homeomorphism group of another compact manifold $N$ satisfies $\phi _M$ if and only if $N$ is homeomorphic to $M$. We prove an analogous statement for groups of homeomorphisms preserving Oxtoby–Ulam probability measures.References
- M. Ajtai, Isomorphism and higher order equivalence, Ann. Math. Logic 16 (1979), no. 3, 181–203. MR 548473, DOI 10.1016/0003-4843(79)90001-9
- Nir Avni, Alexander Lubotzky, and Chen Meiri, First order rigidity of non-uniform higher rank arithmetic groups, Invent. Math. 217 (2019), no. 1, 219–240. MR 3958794, DOI 10.1007/s00222-019-00866-5
- Augustin Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications, vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1445290, DOI 10.1007/978-1-4757-6800-8
- Thomas William Barrett and Hans Halvorson, Quine’s conjecture on many-sorted logic, Synthese 194 (2017), no. 9, 3563–3582. MR 3704904, DOI 10.1007/s11229-016-1107-z
- Salomon Bochner and Deane Montgomery, Groups of differentiable and real or complex analytic transformations, Ann. of Math. (2) 46 (1945), 685–694. MR 14102, DOI 10.2307/1969204
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331–341. MR 133812, DOI 10.2307/1970177
- Morton Brown, A mapping theorem for untriangulated manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961, pp. 92–94. MR 158374
- Eduard Čech, Příspěvek k theorii dimense [Contribution to the theory of dimension], Časopis Pěst. Mat. 62 (1933), 277–291.
- J. Cheeger and J. M. Kister, Counting topological manifolds, Topology 9 (1970), 149–151. MR 256399, DOI 10.1016/0040-9383(70)90036-4
- Lei Chen and Kathryn Mann, Structure theorems for actions of homeomorphism groups, Duke Math. J. 172 (2023), no. 5, 915–962. MR 4568050, DOI 10.1215/00127094-2022-0019
- Charles O. Christenson and William L. Voxman, Aspects of topology, Pure and Applied Mathematics, Vol. 39, Marcel Dekker, Inc., New York-Basel, 1977. MR 487938
- Michel Coornaert, Topological dimension and dynamical systems, Universitext, Springer, Cham, 2015. Translated and revised from the 2005 French original. MR 3242807, DOI 10.1007/978-3-319-19794-4
- Jean-Louis Duret, Sur la théorie élémentaire des corps de fonctions, J. Symbolic Logic 51 (1986), no. 4, 948–956. MR 865921, DOI 10.2307/2273907
- Jean-Louis Duret, Équivalence élémentaire et isomorphisme des corps de courbe sur un corps algébriquement clos, J. Symbolic Logic 57 (1992), no. 3, 808–823 (French). MR 1187449, DOI 10.2307/2275432
- Gerald Edgar, Measure, topology, and fractal geometry, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York, 2008. MR 2356043, DOI 10.1007/978-0-387-74749-1
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 1, 45–93. MR 584082, DOI 10.24033/asens.1377
- R. P. Filipkiewicz, Isomorphisms between diffeomorphism groups, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 159–171 (1983). MR 693972, DOI 10.1017/s0143385700001486
- Casper Goffman and George Pedrick, A proof of the homeomorphism of Lebesgue-Stieltjes measure with Lebesgue measure, Proc. Amer. Math. Soc. 52 (1975), 196–198. MR 376995, DOI 10.1090/S0002-9939-1975-0376995-7
- Be’eri Greenfeld, First-order rigidity of rings satisfying polynomial identities, Ann. Pure Appl. Logic 173 (2022), no. 6, Paper No. 103109, 8. MR 4393207, DOI 10.1016/j.apal.2022.103109
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, NJ, 1941. MR 6493
- Olga Kharlampovich and Alexei Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006), no. 2, 451–552. MR 2293770, DOI 10.1016/j.jalgebra.2006.03.033
- Sang-hyun Kim and Thomas Koberda, Diffeomorphism groups of critical regularity, Invent. Math. 221 (2020), no. 2, 421–501. MR 4121156, DOI 10.1007/s00222-020-00953-y
- Sang-hyun Kim and Thomas Koberda, Structure and regularity of group actions on one-manifolds, Springer Monographs in Mathematics, Springer, Cham, [2021] ©2021. MR 4381312, DOI 10.1007/978-3-030-89006-3
- Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575–582. MR 242165, DOI 10.2307/1970652
- Thomas Koberda and J. de la Nuez González, Uniform first order interpretation of the second order theory of countable groups of homeomorphisms, 2023.
- Thomas Koberda and J. de la Nuez González, Locally approximating groups of homeomorphisms of manifolds, 2024.
- Frédéric Le Roux, On closed subgroups of the group of homeomorphisms of a manifold, J. Éc. polytech. Math. 1 (2014), 147–159 (English, with English and French summaries). MR 3322786, DOI 10.5802/jep.7
- Gérard Leloup, Équivalence élémentaire entre anneaux de monoïdes, Séminaire Général de Logique 1983–1984 (Paris, 1983–1984) Publ. Math. Univ. Paris VII, vol. 27, Univ. Paris VII, Paris, 1986, pp. 149–157 (French). MR 938759
- Kathryn Mann and Maxime Wolff, Reconstructing maps out of groups, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 4, 1135–1154 (English, with English and French summaries). MR 4650155, DOI 10.24033/asens.2551
- David Marker, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002. An introduction. MR 1924282
- Francis Oger, Équivalence élémentaire entre groupes finis-par-abéliens de type fini, Comment. Math. Helv. 57 (1982), no. 3, 469–480 (French). MR 689074, DOI 10.1007/BF02565870
- Phillip A. Ostrand, Covering dimension in general spaces, General Topology and Appl. 1 (1971), no. 3, 209–221. MR 288741, DOI 10.1016/0016-660X(71)90093-6
- J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874–920. MR 5803, DOI 10.2307/1968772
- Eugene Plotkin, On first order rigidity for linear groups, Toyama Math. J. 41 (2020), 45–60. MR 4353090
- Florian Pop, Elementary equivalence versus isomorphism, Invent. Math. 150 (2002), no. 2, 385–408. MR 1933588, DOI 10.1007/s00222-002-0238-7
- MathOverflow Post, Does a *topological* manifold have an exhaustion by compact submanifolds with boundary?, https://mathoverflow.net/questions/129321.
- MathOverflow Post, On a result by Rubin on elementary equivalence of homeomorphism groups and homeomorphisms of the underlying spaces, https://mathoverflow.net/questions/400602.
- Frank Quinn, Ends of maps. III. Dimensions $4$ and $5$, J. Differential Geometry 17 (1982), no. 3, 503–521. MR 679069
- Frank Quinn, Topological transversality holds in all dimensions, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 145–148. MR 929089, DOI 10.1090/S0273-0979-1988-15629-7
- Matatyahu Rubin, On the reconstruction of topological spaces from their groups of homeomorphisms, Trans. Amer. Math. Soc. 312 (1989), no. 2, 487–538. MR 988881, DOI 10.1090/S0002-9947-1989-0988881-4
- Matatyahu Rubin, Locally moving groups and reconstruction problems, Ordered groups and infinite permutation groups, Math. Appl., vol. 354, Kluwer Acad. Publ., Dordrecht, 1996, pp. 121–157. MR 1486199
- Dan Segal and Katrin Tent, Defining $R$ and $G(R)$, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 8, 3325–3358. MR 4612113, DOI 10.4171/jems/1255
- Zlil Sela, Diophantine geometry over groups x: the elementary theory of free products of groups, 2010.
- Floris Takens, Characterization of a differentiable structure by its group of diffeomorphisms, Bol. Soc. Brasil. Mat. 10 (1979), no. 1, 17–25. MR 552032, DOI 10.1007/BF02588337
- Katrin Tent and Martin Ziegler, A course in model theory, Lecture Notes in Logic, vol. 40, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012. MR 2908005, DOI 10.1017/CBO9781139015417
- Xavier Vidaux, Équivalence élémentaire de corps elliptiques, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 1, 1–4 (French, with English and French summaries). MR 1741158, DOI 10.1016/S0764-4442(00)88134-3
- John von Neumann, Collected works. Vol. II: Operators, ergodic theory and almost periodic functions in a group, Pergamon Press, New York-Oxford-London-Paris, 1961. General editor: A. H. Taub. MR 157872
- James V. Whittaker, On isomorphic groups and homeomorphic spaces, Ann. of Math. (2) 78 (1963), 74–91. MR 150750, DOI 10.2307/1970503
Bibliographic Information
- Sang-hyun Kim
- Affiliation: School of Mathematics, Korea Institute for Advanced Study (KIAS), Seoul 02455, South Korea
- MR Author ID: 849667
- ORCID: 0000-0002-7759-8210
- Email: skim.math@gmail.com
- Thomas Koberda
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904-4137
- MR Author ID: 842738
- ORCID: 0000-0001-5465-2651
- Email: thomas.koberda@gmail.com
- J. de la Nuez González
- Affiliation: School of Mathematics, Korea Institute for Advanced Study (KIAS), Seoul 02455, South Korea
- Email: jnuezgonzalez@gmail.com
- Received by editor(s): June 30, 2024
- Received by editor(s) in revised form: February 19, 2025
- Published electronically: May 12, 2025
- Additional Notes: The first and the third authors were supported by Mid-Career Researcher Program (RS-2023-00278510) through the National Research Foundation funded by the government of Korea. The first and the third authors were also supported by KIAS Individual Grants (MG073601 and MG084001, respectively) at Korea Institute for Advanced Study and by Samsung Science and Technology Foundation under Project Number SSTF-BA1301-51. The second author was partially supported by NSF Grants DMS-2002596 and DMS-2349814, Simons Foundation International Grant SFI-MPS-SFM-00005890.
- © Copyright 2025 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Comm. Amer. Math. Soc. 5 (2025), 144-194
- MSC (2020): Primary 20A15, 57S05; Secondary 03C07, 57S25, 57M60
- DOI: https://doi.org/10.1090/cams/47
- MathSciNet review: 4904300