## Properties of convergence groups and spaces

HTML articles powered by AMS MathViewer

- by Eric M. Freden PDF
- Conform. Geom. Dyn.
**1**(1997), 13-23 Request permission

## Abstract:

This paper discusses algebraic and topological conditions that are consequences of a convergence group action.## References

- B. Bowditch,
*Convergence groups and configuration spaces*, preprint, 1996. - —,
*A topological characterization of hyperbolic groups*, preprint, 1996. - B. H. Bowditch,
*Geometrical finiteness for hyperbolic groups*, J. Funct. Anal.**113**(1993), no. 2, 245–317. MR**1218098**, DOI 10.1006/jfan.1993.1052 - B. H. Bowditch,
*Geometrical finiteness with variable negative curvature*, Duke Math. J.**77**(1995), no. 1, 229–274. MR**1317633**, DOI 10.1215/S0012-7094-95-07709-6 - J. Cannon,
*The Theory of Negatively Curved Spaces and Groups*, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (T. Bedford, M. Keane, and C. Series, eds.), Oxford Univ. Press, 1991, pp. 315–369. - Eric M. Freden,
*Negatively curved groups have the convergence property. I*, Ann. Acad. Sci. Fenn. Ser. A I Math.**20**(1995), no. 2, 333–348. MR**1346817** - F. W. Gehring and G. J. Martin,
*Discrete quasiconformal groups. I*, Proc. London Math. Soc. (3)**55**(1987), no. 2, 331–358. MR**896224**, DOI 10.1093/plms/s3-55_{2}.331 - F. Gehring, G. Martin,
*Generalizations of Kleinian groups*, MSRI preprint 06519-86, 1986. - M. Gromov,
*Hyperbolic groups*, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR**919829**, DOI 10.1007/978-1-4613-9586-7_{3} - R. S. Kulkarni,
*Groups with domains of discontinuity*, Math. Ann.**237**(1978), no. 3, 253–272. MR**508756**, DOI 10.1007/BF01420180 - Lee Mosher,
*Hyperbolic extensions of groups*, J. Pure Appl. Algebra**110**(1996), no. 3, 305–314. MR**1393118**, DOI 10.1016/0022-4049(95)00081-X - Wilhelm Magnus, Abraham Karrass, and Donald Solitar,
*Combinatorial group theory*, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR**0422434** - Gaven J. Martin and Richard K. Skora,
*Group actions of the $2$-sphere*, Amer. J. Math.**111**(1989), no. 3, 387–402. MR**1002005**, DOI 10.2307/2374665 - Peter J. Nicholls,
*The ergodic theory of discrete groups*, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. MR**1041575**, DOI 10.1017/CBO9780511600678 - Z. Sela,
*Endomorphisms of hyperbolic groups I: the Hopf property*(to appear). - Lynn Arthur Steen and J. Arthur Seebach Jr.,
*Counterexamples in topology*, Dover Publications, Inc., Mineola, NY, 1995. Reprint of the second (1978) edition. MR**1382863** - Pekka Tukia,
*Convergence groups and Gromov’s metric hyperbolic spaces*, New Zealand J. Math.**23**(1994), no. 2, 157–187. MR**1313451** - —,
*Conical limit points and uniform convergence groups*, preprint, 1997. - Wolfgang Woess,
*Fixed sets and free subgroups of groups acting on metric spaces*, Math. Z.**214**(1993), no. 3, 425–439. MR**1245204**, DOI 10.1007/BF02572415

## Additional Information

**Eric M. Freden**- Affiliation: Uintah Basin Education Center, 987 E. Lagoon St. (124-9), Roosevelt, Utah 84066
- Email: freden@math.byu.edu
- Received by editor(s): February 7, 1997
- Published electronically: May 22, 1997
- © Copyright 1997 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**1**(1997), 13-23 - MSC (1991): Primary 57S30; Secondary 20F38, 20F32
- DOI: https://doi.org/10.1090/S1088-4173-97-00011-8
- MathSciNet review: 1452414