Uniformly quasiregular mappings of Lattès type
HTML articles powered by AMS MathViewer
- by Volker Mayer
- Conform. Geom. Dyn. 1 (1997), 104-111
- DOI: https://doi.org/10.1090/S1088-4173-97-00013-1
- Published electronically: December 16, 1997
- PDF | Request permission
Abstract:
Using an analogy of the Lattès’ construction of chaotic rational functions, we show that there are uniformly quasiregular mappings of the $n$-sphere $\overline {{\Bbb R}}^n$ whose Julia set is the whole sphere. Moreover there are analogues of power mappings, uniformly quasiregular mappings whose Julia set is ${\Bbb S}^{n-1}$ and its complement in ${\Bbb S}^{n}$ consists of two superattracting basins. In the chaotic case we study the invariant conformal structures and show that Lattès type rational mappings are either rigid or form a 1-parameter family of quasiconformal deformations.References
- Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- A. Hinkkanen, Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 205–222. MR 1375517
- Tadeusz Iwaniec and Gaven Martin, Quasiregular semigroups, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 241–254. MR 1404085
- O. Martio, S. Rickman, and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 488 (1971), 31. MR 299782
- O. Martio and U. Srebro, Periodic quasimeromorphic mappings in ${\Bbb R}^n$, J. d’Analyse Math. 28 (1975), 20–40.
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- Jukka Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 297–307. MR 0396945, DOI 10.5186/aasfm.1975.0121
- Pekka Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318–346. MR 861709, DOI 10.1007/BF02796595
- P. Tukia and J. Väisälä, Quasiconformal extension from dimension $n$ to $n+1$, Ann. of Math. (2) 115 (1982), no. 2, 331–348. MR 647809, DOI 10.2307/1971394
Bibliographic Information
- Volker Mayer
- Affiliation: U.R.A. 751, UFR de Mathématiques Pures et Appliquées, Université de Lille I, 59655 Villeneuve d’Ascq, Cedex, France
- MR Author ID: 333982
- Email: mayer@gat.univ-lille1.fr
- Received by editor(s): March 7, 1997
- Received by editor(s) in revised form: September 22, 1997
- Published electronically: December 16, 1997
- © Copyright 1997 American Mathematical Society
- Journal: Conform. Geom. Dyn. 1 (1997), 104-111
- MSC (1991): Primary 30C65; Secondary 58Fxx
- DOI: https://doi.org/10.1090/S1088-4173-97-00013-1
- MathSciNet review: 1482944