Relatively and inner uniform domains
Author:
Jussi Väisälä
Journal:
Conform. Geom. Dyn. 2 (1998), 56-88
MSC (1991):
Primary 30C65
DOI:
https://doi.org/10.1090/S1088-4173-98-00022-8
Published electronically:
August 19, 1998
MathSciNet review:
1637079
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We generalize the concept of a uniform domain in Banach spaces into two directions. (1) The ordinary metric $d$ of a domain is replaced by a metric $e\ge d$, in particular, by the inner metric of the domain. (2) The uniformity condition is supposed to hold only for certain pairs of points of the domain. We consider neargeodesics and solid arcs in these domains. Applications to the boundary behavior of quasiconformal maps are given. In particular, we study maps between domains of the form $E\times B$, where $E$ is a Banach space and $B$ is a ball.
- P. Alestalo, Quasisymmetry in product spaces and uniform domains, Licentiate’s thesis, University of Helsinki, 1991 (Finnish).
- Zoltan Balogh and Alexander Volberg, Geometric localization, uniformly John property and separated semihyperbolic dynamics, Ark. Mat. 34 (1996), no. 1, 21–49. MR 1396621, DOI https://doi.org/10.1007/BF02559505
- Z. Balogh and A. Volberg, Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications, Rev. Mat. Iberoamericana 12 (1996), no. 2, 299–336. MR 1402670, DOI https://doi.org/10.4171/RMI/200
- M. Bonk, J. Heinonen and P. Koskela, Uniformizing Gromov hyperbolic spaces (in preparation).
- José L. Fernández, Juha Heinonen, and Olli Martio, Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117–132. MR 981499, DOI https://doi.org/10.1007/BF02820475
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI https://doi.org/10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI https://doi.org/10.1007/BF02786713
- Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41–66. MR 554817, DOI https://doi.org/10.1512/iumj.1980.29.29005
- Peter W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), no. 1-2, 71–88. MR 631089, DOI https://doi.org/10.1007/BF02392869
- O. Martio, Definitions for uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 197–205. MR 595191, DOI https://doi.org/10.5186/aasfm.1980.0517
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI https://doi.org/10.5186/aasfm.1978-79.0413
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- Juan Jorge Schäffer, Geometry of spheres in normed spaces, Marcel Dekker, Inc., New York-Basel, 1976. Lecture Notes in Pure and Applied Mathematics, No. 20. MR 0467256
- W. P. Thurston, The geometry and topology of three-manifolds, Mimeographed notes, Princeton University, 1980.
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
- Jussi Väisälä, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), 218–234. MR 801295, DOI https://doi.org/10.1007/BF02790198
- Jussi Väisälä, Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101–118. MR 927080, DOI https://doi.org/10.2748/tmj/1178228081
- Jussi Väisälä, Quasiconformal maps of cylindrical domains, Acta Math. 162 (1989), no. 3-4, 201–225. MR 989396, DOI https://doi.org/10.1007/BF02392837
- Jussi Väisälä, Free quasiconformality in Banach spaces. I, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 2, 355–379. MR 1087342, DOI https://doi.org/10.5186/aasfm.1990.1527
- Jussi Väisälä, Free quasiconformality in Banach spaces. II, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 255–310. MR 1139798, DOI https://doi.org/10.5186/aasfm.1991.1629
- Jussi Väisälä, Free quasiconformality in Banach spaces. III, Ann. Acad. Sci. Fenn. Ser. A I Math. 17 (1992), no. 2, 393–408. MR 1190331, DOI https://doi.org/10.5186/aasfm.1992.1732
- ---, Free quasiconformality in Banach spaces IV, Analysis and Topology, ed. by C. Andreian Cazacu et al., World Scientific (to appear).
- ---, The free quasiworld, Proceedings of the fifth Finnish-Polish-Ukranian summer school in complex analysis in Lublin 1996 (to appear).
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (1991): 30C65
Retrieve articles in all journals with MSC (1991): 30C65
Additional Information
Jussi Väisälä
Affiliation:
Matematiikan laitos, Helsingin yliopisto, PL 4, Yliopistonkatu 5, 00014 Helsinki, Finland
Email:
jvaisala@cc.helsinki.fi
Received by editor(s):
September 18, 1997
Received by editor(s) in revised form:
April 14, 1998
Published electronically:
August 19, 1998
Article copyright:
© Copyright 1998
American Mathematical Society