## The shape of the Ford domains for $\Gamma _0(N)$

HTML articles powered by AMS MathViewer

- by Antonio Lascurain Orive
- Conform. Geom. Dyn.
**3**(1999), 1-23 - DOI: https://doi.org/10.1090/S1088-4173-99-00030-2
- Published electronically: February 9, 1999
- PDF | Request permission

## Abstract:

This is a second paper on the Ford domains for the Hecke congruence subgroups \begin{equation*} \Gamma _0(N) = \left \{ \begin {pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm {SL}(2, \mathbb {Z}) \mid c\equiv 0 \mod N \right \}. \end{equation*} The author establishes techniques to calculate the number of sides of these domains; in the process the shape of such polygons becomes apparent in many cases. Explicit formulas are given for numbers which have no more than four prime factors. The main result (**Theorem 1**) exhibits the existence of a

*universal*symmetric polynomial which evaluated at $p_1,p_2,\dots ,p_r$ yields the number of finite vertices of the Ford polygon for $\Gamma _0(N)$, for all numbers $N=p_1\,p_2\dotsb p_r$ whose prime factors are larger than a constant which depends only on $r$. In all cases the formulas are in terms of symmetric polynomials which generalize the Euler $\phi$ function. The techniques developed to count the number of

*visible*isometric circles show that the study of these circles might also be a useful tool to simplify or solve problems in number theory.

## References

- Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777**, DOI 10.1007/978-1-4612-1146-4 - James A. Jenkins,
*On a result of M. Heins*, Proc. Edinburgh Math. Soc. (2)**19**(1974/75), no. 4, 371–373. MR**387575**, DOI 10.1017/S0013091500010476 - Yasuhiro Chuman,
*Generators and relations of $\Gamma _{0}(N)$*, J. Math. Kyoto Univ.**13**(1973), 381–390. MR**348001**, DOI 10.1215/kjm/1250523378 - R. Fricke,
*Die Elliptischen Funktionen und ihre Anwendungen,*part II. ch. 3, p. 349, Teubner, 1922. - Ravi S. Kulkarni,
*An arithmetic-geometric method in the study of the subgroups of the modular group*, Amer. J. Math.**113**(1991), no. 6, 1053–1133. MR**1137534**, DOI 10.2307/2374900 - A. Lascurain, Fundamental Domains for the Hecke Congruence Subgroups, Columbia University, Ph.D. thesis, 1989.
- A. Lascurain,
*Ford Polygons for*$\Gamma _{0}(N)$, Boletín de la Sociedad Matemática Mexicana, Vol.**39**, p. 1-18, 1994. - Goro Shimura,
*Introduction to the arithmetic theory of automorphic functions*, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR**0314766** - Bruno Schoeneberg,
*Elliptic modular functions: an introduction*, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR**0412107**, DOI 10.1007/978-3-642-65663-7 - D. Zagier,
*Modular parametrizations of elliptic curves*, Canad. Math. Bull.**28**(1985), no. 3, 372–384. MR**790959**, DOI 10.4153/CMB-1985-044-8

## Bibliographic Information

**Antonio Lascurain Orive**- Affiliation: Havre 101, Colonia Villa Verdun, Mexico D. F. 01810 Mexico
- Email: lasc@hardy.fciencias.unam.mx
- Received by editor(s): February 1, 1998
- Received by editor(s) in revised form: November 23, 1998
- Published electronically: February 9, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**3**(1999), 1-23 - MSC (1991): Primary 11F06, 20H10, 22E40, 30F35, 51M10
- DOI: https://doi.org/10.1090/S1088-4173-99-00030-2
- MathSciNet review: 1668275