Deformation of Schottky groups in complex hyperbolic space
HTML articles powered by AMS MathViewer
- by Beat Aebischer and Robert Miner PDF
- Conform. Geom. Dyn. 3 (1999), 24-36 Request permission
Abstract:
Let $G=PU(1,d)$ be the group of holomorphic isometries of complex hyperbolic space $\mathbf {H}^d_\mathbf {C}$. The latter is a Kähler manifold with constant negative holomorphic sectional curvature. We call a finitely generated discrete group $\Gamma = \langle g_1,\dots , g_n \rangle \subset G$ a marked classical Schottky group of rank $n$ if there is a fundamental polyhedron for $G$ whose sides are equidistant hypersurfaces which are disjoint and not asymptotic, and for which $g_1, \dots , g_n$ are side-pairing transformations. We consider smooth families of such groups $\Gamma _t = \langle g_{1,t}, \dots , g_{n,t} \rangle$ with $g_{j,t}$ depending smoothly ($C^1$) on $t$ whose fundamental polyhedra also vary smoothly. The groups $\Gamma _t$ are all algebraically isomorphic to the free group in $n$ generators, i.e. there are canonical isomorphisms $\phi _t: \Gamma _0\to \Gamma _t$. We shall construct a homeomorphism $\Psi _t$ of $\overline {\mathbf {H}}^d_\mathbf {C} = \mathbf {H}^d_\mathbf {C}\cup \partial \mathbf {H}^d_\mathbf {C}$ which is equivariant with respect to these groups: \begin{equation*} \phi _t(g) \circ \Psi _t = \Psi _t \circ g \quad \; \forall g\in \Gamma _0, \quad 0\leq t\leq 1 \end{equation*} which is quasiconformal on $\partial \mathbf {H}^d_\mathbf {C}$ with respect to the Heisenberg metric, and which is symplectic in the interior. As a corollary, the limit sets of such Schottky groups of equal rank are quasiconformally equivalent to each other. The main tool for the construction is a time-dependent Hamiltonian vector field used to define a diffeomorphism, mapping $D_0$ onto $D_t$, where $D_t$ is a fundamental domain of $\Gamma _t$. In two steps, this is extended equivariantly to $\overline {\mathbf {H}}^d_\mathbf {C}$. The method yields similar results for real hyperbolic space, while the analog for the other rank-one symmetric spaces of noncompact type cannot hold.References
- K. Astala and G. J. Martin Holomorphic motions, preprint 1994.
- Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600. MR 297992, DOI 10.2307/1970638
- Lipman Bers, Spaces of Kleinian groups, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 9–34. MR 0271333
- S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49–87. MR 0377765
- Kevin Corlette, Hausdorff dimensions of limit sets. I, Invent. Math. 102 (1990), no. 3, 521–541. MR 1074486, DOI 10.1007/BF01233439
- C. J. Earle, I. Kra, and S. L. Krushkal′, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), no. 2, 927–948. MR 1214783, DOI 10.1090/S0002-9947-1994-1214783-6
- William M. Goldman, Complex hyperbolic Kleinian groups, Complex geometry (Osaka, 1990) Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 31–52. MR 1201600
- W. M. Goldman, Introduction to Complex Hyperbolic Geometry, Oxford University Press, to appear.
- William M. Goldman and John R. Parker, Complex hyperbolic ideal triangle groups, J. Reine Angew. Math. 425 (1992), 71–86. MR 1151314
- William M. Goldman and John R. Parker, Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space, J. Geom. Anal. 2 (1992), no. 6, 517–554. MR 1189043, DOI 10.1007/BF02921576
- Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984. MR 770935
- Juha Heinonen and Pekka Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61–79. MR 1323982, DOI 10.1007/BF01241122
- Troels Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739–749. MR 427627, DOI 10.2307/2373814
- A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309–338. MR 788413, DOI 10.1007/BF01388609
- Adam Korányi and Hans Martin Reimann, Contact transformations as limits of symplectomorphisms, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 12, 1119–1124 (English, with English and French summaries). MR 1282355
- A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1–87. MR 1317384, DOI 10.1006/aima.1995.1017
- Gaven J. Martin, On discrete isometry groups of negative curvature, Pacific J. Math. 160 (1993), no. 1, 109–127. MR 1227506, DOI 10.2140/pjm.1993.160.109
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- John Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), no. 1, 35–45. MR 806700
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730, DOI 10.1007/978-1-4757-4013-4
- Pekka Tukia, On isomorphisms of geometrically finite Möbius groups, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 171–214. MR 783351, DOI 10.1007/BF02698805
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
Additional Information
- Beat Aebischer
- Affiliation: Leica AG, PPT 4199, 9435 Heerbrugg, Switzerland
- Email: Beat.Aebischer@email.leica.com
- Robert Miner
- Affiliation: The Geometry Center, University of Minnesota, Minneapolis, Minnesota 55454
- Email: rminer@geom.umn.edu
- Received by editor(s): March 3, 1997
- Received by editor(s) in revised form: November 4, 1998
- Published electronically: March 11, 1999
- Additional Notes: B. Aebischer supported by Schweizerischer Nationalfonds
R. Miner partially supported by NSF grant DMS-9404174 - © Copyright 1999 American Mathematical Society
- Journal: Conform. Geom. Dyn. 3 (1999), 24-36
- MSC (1991): Primary 30C65; Secondary 32G10, 57S30, 53C55, 58F05
- DOI: https://doi.org/10.1090/S1088-4173-99-00010-7
- MathSciNet review: 1677557