## Deformation of Schottky groups in complex hyperbolic space

HTML articles powered by AMS MathViewer

- by Beat Aebischer and Robert Miner
- Conform. Geom. Dyn.
**3**(1999), 24-36 - DOI: https://doi.org/10.1090/S1088-4173-99-00010-7
- Published electronically: March 11, 1999
- PDF | Request permission

## Abstract:

Let $G=PU(1,d)$ be the group of holomorphic isometries of complex hyperbolic space $\mathbf {H}^d_\mathbf {C}$. The latter is a Kähler manifold with constant negative holomorphic sectional curvature. We call a finitely generated discrete group $\Gamma = \langle g_1,\dots , g_n \rangle \subset G$ a*marked classical Schottky group of rank*$n$ if there is a fundamental polyhedron for $G$ whose sides are equidistant hypersurfaces which are disjoint and not asymptotic, and for which $g_1, \dots , g_n$ are side-pairing transformations. We consider smooth families of such groups $\Gamma _t = \langle g_{1,t}, \dots , g_{n,t} \rangle$ with $g_{j,t}$ depending smoothly ($C^1$) on $t$ whose fundamental polyhedra also vary smoothly. The groups $\Gamma _t$ are all algebraically isomorphic to the free group in $n$ generators, i.e. there are canonical isomorphisms $\phi _t: \Gamma _0\to \Gamma _t$. We shall construct a homeomorphism $\Psi _t$ of $\overline {\mathbf {H}}^d_\mathbf {C} = \mathbf {H}^d_\mathbf {C}\cup \partial \mathbf {H}^d_\mathbf {C}$ which is equivariant with respect to these groups: \begin{equation*} \phi _t(g) \circ \Psi _t = \Psi _t \circ g \quad \; \forall g\in \Gamma _0, \quad 0\leq t\leq 1 \end{equation*} which is quasiconformal on $\partial \mathbf {H}^d_\mathbf {C}$ with respect to the Heisenberg metric, and which is symplectic in the interior. As a corollary, the limit sets of such Schottky groups of equal rank are quasiconformally equivalent to each other. The main tool for the construction is a time-dependent Hamiltonian vector field used to define a diffeomorphism, mapping $D_0$ onto $D_t$, where $D_t$ is a fundamental domain of $\Gamma _t$. In two steps, this is extended equivariantly to $\overline {\mathbf {H}}^d_\mathbf {C}$. The method yields similar results for real hyperbolic space, while the analog for the other rank-one symmetric spaces of noncompact type cannot hold.

## References

- K. Astala and G. J. Martin
*Holomorphic motions*, preprint 1994. - Lipman Bers,
*On boundaries of Teichmüller spaces and on Kleinian groups. I*, Ann. of Math. (2)**91**(1970), 570–600. MR**297992**, DOI 10.2307/1970638 - Lipman Bers,
*Spaces of Kleinian groups*, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 9–34. MR**0271333** - S. S. Chen and L. Greenberg,
*Hyperbolic spaces*, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49–87. MR**0377765** - Kevin Corlette,
*Hausdorff dimensions of limit sets. I*, Invent. Math.**102**(1990), no. 3, 521–541. MR**1074486**, DOI 10.1007/BF01233439 - C. J. Earle, I. Kra, and S. L. Krushkal′,
*Holomorphic motions and Teichmüller spaces*, Trans. Amer. Math. Soc.**343**(1994), no. 2, 927–948. MR**1214783**, DOI 10.1090/S0002-9947-1994-1214783-6 - William M. Goldman,
*Complex hyperbolic Kleinian groups*, Complex geometry (Osaka, 1990) Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 31–52. MR**1201600** - W. M. Goldman,
*Introduction to Complex Hyperbolic Geometry*, Oxford University Press, to appear. - William M. Goldman and John R. Parker,
*Complex hyperbolic ideal triangle groups*, J. Reine Angew. Math.**425**(1992), 71–86. MR**1151314** - William M. Goldman and John R. Parker,
*Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space*, J. Geom. Anal.**2**(1992), no. 6, 517–554. MR**1189043**, DOI 10.1007/BF02921576 - Victor Guillemin and Shlomo Sternberg,
*Symplectic techniques in physics*, Cambridge University Press, Cambridge, 1984. MR**770935** - Juha Heinonen and Pekka Koskela,
*Definitions of quasiconformality*, Invent. Math.**120**(1995), no. 1, 61–79. MR**1323982**, DOI 10.1007/BF01241122 - Troels Jørgensen,
*On discrete groups of Möbius transformations*, Amer. J. Math.**98**(1976), no. 3, 739–749. MR**427627**, DOI 10.2307/2373814 - A. Korányi and H. M. Reimann,
*Quasiconformal mappings on the Heisenberg group*, Invent. Math.**80**(1985), no. 2, 309–338. MR**788413**, DOI 10.1007/BF01388609 - Adam Korányi and Hans Martin Reimann,
*Contact transformations as limits of symplectomorphisms*, C. R. Acad. Sci. Paris Sér. I Math.**318**(1994), no. 12, 1119–1124 (English, with English and French summaries). MR**1282355** - A. Korányi and H. M. Reimann,
*Foundations for the theory of quasiconformal mappings on the Heisenberg group*, Adv. Math.**111**(1995), no. 1, 1–87. MR**1317384**, DOI 10.1006/aima.1995.1017 - Gaven J. Martin,
*On discrete isometry groups of negative curvature*, Pacific J. Math.**160**(1993), no. 1, 109–127. MR**1227506**, DOI 10.2140/pjm.1993.160.109 - Bernard Maskit,
*Kleinian groups*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR**959135** - John Mitchell,
*On Carnot-Carathéodory metrics*, J. Differential Geom.**21**(1985), no. 1, 35–45. MR**806700** - G. D. Mostow,
*Strong rigidity of locally symmetric spaces*, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR**0385004** - Pierre Pansu,
*Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un*, Ann. of Math. (2)**129**(1989), no. 1, 1–60 (French, with English summary). MR**979599**, DOI 10.2307/1971484 - John G. Ratcliffe,
*Foundations of hyperbolic manifolds*, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR**1299730**, DOI 10.1007/978-1-4757-4013-4 - Pekka Tukia,
*On isomorphisms of geometrically finite Möbius groups*, Inst. Hautes Études Sci. Publ. Math.**61**(1985), 171–214. MR**783351**, DOI 10.1007/BF02698805 - Jussi Väisälä,
*Lectures on $n$-dimensional quasiconformal mappings*, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR**0454009**, DOI 10.1007/BFb0061216

## Bibliographic Information

**Beat Aebischer**- Affiliation: Leica AG, PPT 4199, 9435 Heerbrugg, Switzerland
- Email: Beat.Aebischer@email.leica.com
**Robert Miner**- Affiliation: The Geometry Center, University of Minnesota, Minneapolis, Minnesota 55454
- Email: rminer@geom.umn.edu
- Received by editor(s): March 3, 1997
- Received by editor(s) in revised form: November 4, 1998
- Published electronically: March 11, 1999
- Additional Notes: B. Aebischer supported by Schweizerischer Nationalfonds

R. Miner partially supported by NSF grant DMS-9404174 - © Copyright 1999 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**3**(1999), 24-36 - MSC (1991): Primary 30C65; Secondary 32G10, 57S30, 53C55, 58F05
- DOI: https://doi.org/10.1090/S1088-4173-99-00010-7
- MathSciNet review: 1677557