Taimanov’s surface evolution and Bäcklund transformations for curves
HTML articles powered by AMS MathViewer
- by Oscar Garay and Joel Langer
- Conform. Geom. Dyn. 3 (1999), 37-49
- DOI: https://doi.org/10.1090/S1088-4173-99-00043-0
- Published electronically: March 25, 1999
- PDF | Request permission
Abstract:
Taimanov’s evolution of conformally parametrized surfaces in Euclidean space by the modified Novikov-Veselov equation is interpreted here (in the revolution case) using hyperbolic geometry and Bäcklund transformations for curves.References
- A. Calini and T. Ivey, Bäcklund transformations and knots of constant torsion, J. Knot Theory and its Ramifications 7 (1998), p. 719.
- Bang-yen Chen, Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. (4) 10 (1974), 380–385 (English, with Italian summary). MR 0370436
- Raymond E. Goldstein and Dean M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), no. 23, 3203–3206. MR 1135964, DOI 10.1103/PhysRevLett.67.3203
- T. Ivey, Helices, Hasimoto surfaces and Bäcklund transformations, Preprint (1998).
- B. G. Konopelchenko, Induced surfaces and their integrable dynamics, Stud. Appl. Math. 96 (1996), no. 1, 9–51. MR 1365273, DOI 10.1002/sapm19969619
- G. L. Lamb Jr., Solitons and the motion of helical curves, Phys. Rev. Lett. 37 (1976), no. 5, 235–237. MR 473584, DOI 10.1103/PhysRevLett.37.235
- Joel Langer and Ron Perline, Poisson geometry of the filament equation, J. Nonlinear Sci. 1 (1991), no. 1, 71–93. MR 1102831, DOI 10.1007/BF01209148
- Joel Langer and Ron Perline, Local geometric invariants of integrable evolution equations, J. Math. Phys. 35 (1994), no. 4, 1732–1737. MR 1267918, DOI 10.1063/1.530567
- J. Langer and R. Perline, Curve motion inducing modified Korteweg-de Vries systems, Phys. Lett. A 239 (1998), pp. 36-40.
- Joel Langer and David A. Singer, The total squared curvature of closed curves, J. Differential Geom. 20 (1984), no. 1, 1–22. MR 772124
- Joel Langer and David Singer, Curves in the hyperbolic plane and mean curvature of tori in $3$-space, Bull. London Math. Soc. 16 (1984), no. 5, 531–534. MR 751827, DOI 10.1112/blms/16.5.531
- C. Rogers, Bäcklund transformations in soliton theory, in Soliton theory: a survey of results, ed. A. P. Fordy, St. Martin’s Press, 1990.
- Iskander A. Taimanov, Modified Novikov-Veselov equation and differential geometry of surfaces, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, pp. 133–151. MR 1437161, DOI 10.1090/trans2/179/07
- I. Taimanov, Surfaces of revolution in terms of solitons, Ann. Global Analysis and Geom. 15 (1997), pp. 419-435.
- Joel L. Weiner, On a problem of Chen, Willmore, et al, Indiana Univ. Math. J. 27 (1978), no. 1, 19–35. MR 467610, DOI 10.1512/iumj.1978.27.27003
Bibliographic Information
- Oscar Garay
- Affiliation: Department of Mathematics, Universidad Pais Vasco, Bilbao, Spain
- Email: mtpgabeo@lg.ehu.es
- Joel Langer
- Affiliation: Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106
- Email: jxl6@po.cwru.edu
- Received by editor(s): October 28, 1998
- Published electronically: March 25, 1999
- Additional Notes: We wish to acknowledge the support of the Departamento De Educacion, Universidades E Investigacion, Gobierno Vasco, for J. Langer’s visit.
- © Copyright 1999 American Mathematical Society
- Journal: Conform. Geom. Dyn. 3 (1999), 37-49
- MSC (1991): Primary 35Q51, 35Q53, 53A05, 53A35, 53A30
- DOI: https://doi.org/10.1090/S1088-4173-99-00043-0
- MathSciNet review: 1684040