Families of Baker domains II
HTML articles powered by AMS MathViewer
- by P. J. Rippon and G. M. Stallard
- Conform. Geom. Dyn. 3 (1999), 67-78
- DOI: https://doi.org/10.1090/S1088-4173-99-00045-4
- Published electronically: June 14, 1999
- PDF | Request permission
Abstract:
Let $f$ be a transcendental meromorphic function and $U$ be an invariant Baker domain of $f$. We use estimates for the hyperbolic metric to show that there is a relationship between the size of $U$ and the proximity of $f$ in $U$ to the identity function, and illustrate this by discussing how the dynamics of transcendental entire functions of the following form vary with the parameter $a$: \begin{equation*} f(z) = az + bz^ke^{-z}(1+o(1)) \; \text { as } \Re (z) \rightarrow \infty , \end{equation*} where $k \in \mathbf N$, $a \geq 1$ and $b > 0$.References
- I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563–576. MR 759304, DOI 10.1112/plms/s3-49.3.563
- I. N. Baker and J. Weinreich, Boundaries which arise in the dynamics of entire functions, Rev. Roumaine Math. Pures Appl. 36 (1991), no. 7-8, 413–420. Analyse complexe (Bucharest, 1989). MR 1144573
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Walter Bergweiler, Invariant domains and singularities, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 3, 525–532. MR 1317494, DOI 10.1017/S0305004100073345
- Walter Bergweiler, On the Julia set of analytic self-maps of the punctured plane, Analysis 15 (1995), no. 3, 251–256. MR 1357963, DOI 10.1524/anly.1995.15.3.251
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- P. Domínguez, Dynamics of transcendental meromorphic functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 225–250. MR 1601879
- P. Dominguez and I. N. Baker, Boundaries of unbounded Fatou components of entire functions, To appear in Ann. Acad. Sci. Fenn. Math.
- A. È. Erëmenko and M. Ju. Ljubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), no. 3, 458–468. MR 918638, DOI 10.1112/jlms/s2-36.3.458
- P. Fatou, Sur l’itération des fonctions transcendantes entières, Acta. Math. France, 47 (1926), 337–360.
- D. Gaier, Lectures on Complex Approximation, Birkhäuser, 1985.
- Michael-R. Herman, Are there critical points on the boundaries of singular domains?, Comm. Math. Phys. 99 (1985), no. 4, 593–612. MR 796014, DOI 10.1007/BF01215911
- Ch. Pommerenke, On the iteration of analytic functions in a halfplane, J. London Math. Soc. (2) 19 (1979), no. 3, 439–447. MR 540058, DOI 10.1112/jlms/s2-19.3.439
- P. J. Rippon and G. M. Stallard, Families of Baker domains, I. To appear in Nonlinearity.
- P. J. Rippon and G. M. Stallard, On sets where iterates of a meromorphic function zip towards infinity. Preprint.
Bibliographic Information
- P. J. Rippon
- Affiliation: Department of Pure Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA England
- MR Author ID: 190595
- Email: p.j.rippon@open.ac.uk
- G. M. Stallard
- Affiliation: Department of Pure Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA England
- MR Author ID: 292621
- Email: g.m.stallard@open.ac.uk
- Received by editor(s): January 5, 1999
- Received by editor(s) in revised form: April 19, 1999
- Published electronically: June 14, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Conform. Geom. Dyn. 3 (1999), 67-78
- MSC (1991): Primary 30D05; Secondary 58F08
- DOI: https://doi.org/10.1090/S1088-4173-99-00045-4
- MathSciNet review: 1689255