Unbounded components in parameter space of rational maps
HTML articles powered by AMS MathViewer
- by Peter M. Makienko
- Conform. Geom. Dyn. 4 (2000), 1-21
- DOI: https://doi.org/10.1090/S1088-4173-00-00044-8
- Published electronically: February 23, 2000
- PDF | Request permission
Abstract:
Using pinching deformations of Riemann surfaces, we give several sufficient criteria for the space of quasiconformal deformations of rational map $R$ of degree $d$ to have non-compact closure in the space $Rat_{d}$ of rational maps of degree $d$ modulo conjugation by Möbius transformations.References
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- L. R. Goldberg and J. Milnor, Fixed points of polynomials maps, II. Fixed point portraits, Preprint Stony Brook (1990).
- A. È. Erëmenko and G. M. Levin, Periodic points of polynomials, Ukrain. Mat. Zh. 41 (1989), no. 11, 1467–1471, 1581 (Russian); English transl., Ukrainian Math. J. 41 (1989), no. 11, 1258–1262 (1990). MR 1036486, DOI 10.1007/BF01056491
- M. Yu. Lyubich, Dynamics of rational transformations: topological picture, Uspekhi Mat. Nauk 41 (1986), no. 4(250), 35–95, 239 (Russian). MR 863874
- P. Makienko, Pinching and plumbing deformations of quadratic rational maps, Preprint, ICTP 93.32 (1993).
- P. Makienko, Unbounded components in parameter space of rational maps, Preprint, ICTP (1993).
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- Bernard Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 381–386. MR 802500, DOI 10.5186/aasfm.1985.1042
- Bernard Maskit, Parabolic elements in Kleinian groups, Ann. of Math. (2) 117 (1983), no. 3, 659–668. MR 701259, DOI 10.2307/2007038
- Curt McMullen, Automorphisms of rational maps, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 31–60. MR 955807, DOI 10.1007/978-1-4613-9602-4_{3}
- Curtis T. McMullen, The classification of conformal dynamical systems, Current developments in mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 323–360. MR 1474980
- J. Milnor, Remarks on Quadratic maps, Preprint Stony Brook (1992).
- K. Pilgrim, Ph.D. Thesis, 1994.
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140, DOI 10.24033/asens.1522
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI 10.2307/1971277
Bibliographic Information
- Peter M. Makienko
- Affiliation: Institute for Applied Mathematics, Shevchenko str. 9, Khabarovsk, 680 000, Russia
- Address at time of publication: Instituto de Matematicas Unidad Cuernavaca, Universidad Nacional Autonoma de Mexico, A.P. 273-3 Admon. de Correos #3, 62251 Cuernavaca, Morelos, Mexico
- Email: makienko@iam.khv.ru, makienko@matcuer.unam.mx
- Received by editor(s): December 27, 1998
- Received by editor(s) in revised form: September 14, 1999
- Published electronically: February 23, 2000
- Additional Notes: This work has been partially supported by the Russian Fund of Basic Researches, Grant 99-01-01006
- © Copyright 2000 American Mathematical Society
- Journal: Conform. Geom. Dyn. 4 (2000), 1-21
- MSC (2000): Primary 37F45; Secondary 37F30
- DOI: https://doi.org/10.1090/S1088-4173-00-00044-8
- MathSciNet review: 1741344