Rotation estimates and spirals
HTML articles powered by AMS MathViewer
- by Vladimir Gutlyanskiǐ and Olli Martio
- Conform. Geom. Dyn. 5 (2001), 6-20
- DOI: https://doi.org/10.1090/S1088-4173-01-00060-1
- Published electronically: March 30, 2001
- PDF | Request permission
Abstract:
It is shown that the logarithmic spiral gives the extremum to F. John’s angle distortion problem for plane bilipschitz mappings. The problem of factoring spiral-like mappings into a composition of homeomorphisms with smaller isometric distortion is studied. A space counterpart of the Freedman and He theorem is obtained.References
- P. P. Belinskiĭ, Obshchie svoĭ stva kvazikonformnykh otobrazheniĭ, Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1974 (Russian). MR 0407275
- Michael H. Freedman and Zheng-Xu He, Factoring the logarithmic spiral, Invent. Math. 92 (1988), no. 1, 129–138. MR 931207, DOI 10.1007/BF01393995
- F. W. Gehring, Spirals and the universal Teichmüller space, Acta Math. 141 (1978), no. 1-2, 99–113. MR 499134, DOI 10.1007/BF02545744
- F. W. Gehring, Injectivity of local quasi-isometries, Comment. Math. Helv. 57 (1982), no. 2, 202–220. MR 684113, DOI 10.1007/BF02565857 [5]5 Gutlyanskii, V., Martio, O., Vuorinen, M., Rotation in space, University of Helsinki, Department of Mathematics, Preprint 215, (1999), 23 pp.
- V. Ya. Gutlyanskiĭ, O. Martio, V. I. Ryazanov, and M. Vuorinen, On convergence theorems for space quasiregular mappings, Forum Math. 10 (1998), no. 3, 353–375. MR 1619727, DOI 10.1515/form.10.3.353
- Fritz John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391–413. MR 138225, DOI 10.1002/cpa.3160140316
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Fritz John, Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains, Comm. Pure Appl. Math. 25 (1972), 617–634. MR 315308, DOI 10.1002/cpa.3160250505
- Olli Lehto, On the differentiability of quasiconformal mappings with prescribed complex dilatation, Ann. Acad. Sci. Fenn. Ser. A I 275 (1960), 28. MR 0125963
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Gaven J. Martin and Brad G. Osgood, The quasihyperbolic metric and associated estimates on the hyperbolic metric, J. Analyse Math. 47 (1986), 37–53. MR 874043, DOI 10.1007/BF02792531
- Edgar Reich and Kurt Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR 0361065
- Yu. G. Reshetnyak, Stability theorems in geometry and analysis, Mathematics and its Applications, vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author; Translation edited and with a foreword by S. S. Kutateladze. MR 1326375, DOI 10.1007/978-94-015-8360-2
- Kurt Strebel, Ein Konvergenzsatz für Folgen quasikonformer Abbildungen, Comment. Math. Helv. 44 (1969), 469–475 (German). MR 254235, DOI 10.1007/BF02564546 [16]16 Teichmüller, O., Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938), 621–678.
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
Bibliographic Information
- Vladimir Gutlyanskiǐ
- Affiliation: Institute of Applied Mathematics and Mechanics, NAS of Ukraine, ul. Roze Luxemburg 74, 340114, Donetsk, Ukraine
- Email: gut@iamm.ac.donetsk.ua
- Olli Martio
- Affiliation: Department of Mathematics, P. O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland
- MR Author ID: 120710
- Email: martio@cc.helsinki.fi
- Received by editor(s): March 17, 2000
- Received by editor(s) in revised form: January 4, 2001
- Published electronically: March 30, 2001
- Additional Notes: The authors thank the Mittag-Leffler Institute for financial support during the fall of the academic year 1999/2000
- © Copyright 2001 American Mathematical Society
- Journal: Conform. Geom. Dyn. 5 (2001), 6-20
- MSC (2000): Primary 30C62, 30C65
- DOI: https://doi.org/10.1090/S1088-4173-01-00060-1
- MathSciNet review: 1836404