Some presentations for $\overline {\Gamma }_0(N)$
HTML articles powered by AMS MathViewer
- by Antonio Lascurain Orive
- Conform. Geom. Dyn. 6 (2002), 33-60
- DOI: https://doi.org/10.1090/S1088-4173-02-00073-5
- Published electronically: May 30, 2002
- PDF | Request permission
Abstract:
Some presentations of the Fuchsian groups defined by the Hecke congruence subgroups \[ \Gamma _{0}( N)\;=\; \left \{\begin {pmatrix} a& b c& d \end {pmatrix} \in SL(2,\mathbb {Z})\;\Big {|} \;\; c\equiv 0\;\; \text {mod}\; N \right \} \] are given. The first is one obtained by the Reidemeister-Schreier rewriting process, thereby completing and correcting Chuman’s work on the subject. The main result (Theorem 3) is the reduction of this huge presentation into another one which is simple and useful. In the process, $\mathbb {Z}_N$ is partitioned into three subsets that exhibit many cyclic and dual properties of its ring structure. For some cases, a minimal presentation derived from the Ford domains is given explicitly in terms of the units and its inverses.References
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Alan F. Beardon and Troels Jørgensen, Fundamental domains for finitely generated Kleinian groups, Math. Scand. 36 (1975), 21–26. MR 387576, DOI 10.7146/math.scand.a-11559
- Yasuhiro Chuman, Generators and relations of $\Gamma _{0}(N)$, J. Math. Kyoto Univ. 13 (1973), 381–390. MR 348001, DOI 10.1215/kjm/1250523378
- Ravi S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the modular group, Amer. J. Math. 113 (1991), no. 6, 1053–1133. MR 1137534, DOI 10.2307/2374900
- Antonio Lascurain Orive, Ford polygons for $\Gamma _0(N)$, Bol. Soc. Mat. Mexicana (2) 39 (1994), no. 1-2, 1–18. MR 1338678
- Antonio Lascurain Orive, The shape of the Ford domains for $\Gamma _0(N)$, Conform. Geom. Dyn. 3 (1999), 1–23. MR 1668275, DOI 10.1090/S1088-4173-99-00030-2
- Joseph Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, R.I., 1964. MR 0164033, DOI 10.1090/surv/008
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434 Radamacher H. Radamacher, Uber die Erzeungenden von Kongruenzuntergruppen der Modulgruppe, Ham. Abh. 7, pp.139-148, 1929.
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
- Bruno Schoeneberg, Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR 0412107, DOI 10.1007/978-3-642-65663-7
Bibliographic Information
- Antonio Lascurain Orive
- Affiliation: Havre 101, Colonia Villa Verdun, Mexico D.F. 01810 Mexico
- Email: lasc@hp.fciencias.unam.mx
- Received by editor(s): January 8, 2001
- Received by editor(s) in revised form: April 11, 2002
- Published electronically: May 30, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Conform. Geom. Dyn. 6 (2002), 33-60
- MSC (2000): Primary 11F06, 20H05, 30F35, 51M10, 52C22; Secondary 13M05, 22E40
- DOI: https://doi.org/10.1090/S1088-4173-02-00073-5
- MathSciNet review: 1948848