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VOLUMES OF HYPERBOLIC 3-MANIFOLDS.
NOTES ON A PAPER OF GABAI, MEYERHOFF, AND MILLEY

T. H. MARSHALL AND G. J. MARTIN

Abstract. We present a new approach and improvements to the recent re-
sults of Gabai, Meyerhoff and Milley concerning tubes and short geodesics in
hyperbolic 3-manifolds. We establish the following two facts: if a hyperbolic
3-manifold admits an embedded tubular neighbourhood of radius r0 > 1.32
about any closed geodesic, then its volume exceeds that of the Weeks manifold.
If the shortest geodesic of M has length less than `0 < 0.1, then its volume
also exceeds that of the Weeks manifold.

1. Introduction

In the paper [6], Gabai, Meyerhoff and Milley establish the compactness of a
certain parameter space which they propose to search, following their earlier work
with Thurston [7], to identify the smallest volume hyperbolic 3–manifold. They
also discuss the feasibility of this search and other computational issues. In this
note we introduce a new approach for investigating these spaces. We prove that
0.2855 is a lower bound for the volume of any hyperbolic 3–manifold. (The previous
best known bound was 0.27 obtained by Przeworski [16], following [10]. Recently,
Algol has improved this to 0.32 using entirely different techniques.) The conjectural
sharp value here is that of the Weeks manifold with a volume of about 0.9427. We
establish the following two facts: if a hyperbolic 3–manifold admits an embedded
tubular neighbourhood of radius r0 > 1.31 about any closed geodesic, then its
volume exceeds that of the Weeks manifold. Further, if the shortest geodesic of
M has length less than `0 < 0.1, then its volume also exceeds that of the Weeks
manifold. (The bounds obtained in [6] were r0 > 1.483 and `0 < 0.069.) Przeworski
has further improved these bounds using packing arguments for congruent cylinders
in hyperbolic space, [17].

We feel our approach here, while closely paralleling [6], is somewhat cleaner,
sharper and offers greater hope for generalisation.

We remark that given the hugely computer intensive nature of the proposed
search, it seems justifiable here to use a machine to make routine verifications such
as establishing a function (often quite complicated) is increasing or decreasing, and
so forth, rather than presenting pages of calculations. We have carried out all calcu-
lations on Mathematica and reported results to 3 decimals. This degree of accuracy
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in the situations under consideration only requires an elementary error analysis, in-
deed Taylor’s error bounds are sufficient to guarantee the reported accuracy once
we compute various derivatives (also performed by machine).

2. Some formulae

Throughout we use the half-space model H3 of hyperbolic space. As usual, we
identify the boundary points of H3 with the extended complex plane. For x, y ∈ H3,
ρ(x, y) will denote the hyperbolic distance between x and y and I will denote the
geodesic with endpoints 0 and ∞.

Given any two oriented geodesics γ1 and γ2 which do not meet either in H3 or
on the boundary, we define uniquely (mod 2π) the rotation angle between them
as follows. Let γ be the common perpendicular to γ1 and γ2 oriented from γ1 to
γ2 and let ri be the ray emanating along γi from the point γi ∩ γ (i = 1, 2). Now
define the rotation angle θ between γ1 and γ2 to be the angle obtained by going
from r1 to r2 in the anticlockwise direction determined by the orientation of γ and
the right-hand rule. Clearly this definition is independent of the ordering of γ1

and γ2. If the geodesics are not oriented, then the rotation angle is still defined
modulo π. Let δ(γ1, γ2) denote the complex distance between γ1 and γ2 (that is
the complex number whose real and imaginary parts are respectively the distance
and the rotation angle between γ1 and γ2). We abbreviate δ(γ, I) to δ(γ) (where I
is oriented from 0 to ∞).

For z in the open right half-plane, C+, of C let α = α(z) be the geodesic with
endpoints tanh(z/2) and coth(z/2) oriented from tanh(z/2) to coth(z/2) so that,
by [14] Lemma 5.2, we have that the geodesic α is the complex distance z to I.
Observe that adding iπ to z just changes the orientation.

The geodesic α(z) can be considered as a canonical representative of all oriented
geodesics with complex distance z to I and, if <(δ(γ)) > 0, then γ can be mapped
to α(δ(γ)) by a complex dilation. We now define a mapping from these geodesics
to C. If γ has (finite nonzero) endpoints z1 and z2 and is oriented from z1 to z2,
let c(γ) = z1

√
z2/z1, where we use the principal branch of the square root. (This

is just a square root of z1z2, but not necessarily the principal branch.) Note that,
for any complex λ, c(λγ) = λc(γ) and that c(α(z)) = 1. In geometric terms, c(γ)
is the point obtained by extending the perpendicular geodesic through I and γ, in
that order, to the boundary. This can be proved essentially by the argument of
Lemma 5.3 [14]. However we do not need this information here.

For t > 0, z, w ∈ C+, let

A(t, z, w) = {log(λ) : ρ(λα(w), α(z)) ≤ t},(1)

where the principal value of the logarithm is used.

Theorem 2.1. For z, w ∈ C+, λ ∈ C, λ 6= 0, if δ(α(z), λα(w)) = v, then

cosh(log(λ)) =
cosh(z) cosh(w) − cosh(v)

sinh(z) sinh(w)
.
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For each z, w ∈ C+ and 0 < t ≤ <(z + w), let E(t, z, w) be the region bounded
by the ellipse{

cosh(z) cosh(w) − cosh(t+ iψ)
sinh(z) sinh(w)

: 0 ≤ ψ ≤ 2π
}

=
{

cosh(z ± w) − cosh(t+ iψ)
sinh(z) sinh(w)

∓ 1 : 0 ≤ ψ ≤ 2π
}
.

(2)

The upper bound on t (which we shall always assume tacitly) guarantees that −1
does not lie in the interior of E(t, z, w), hence, in this region, arccosh is defined
unambiguously up to sign by taking taking ± the principal branch. With this
definition we have
Corollary 2.1.

A(t, z, w) = arccosh(E(t, z, w)).

Note that, when t < <(z + w), A(t, z, w) is bounded by a smooth curve (which
double covers the ellipse E(t, z, w)).

We defer the proof of Theorem 2.1 which is a direct, if lengthy, calculation.
When z = w, Theorem 2.1 takes the following simpler form, which will be useful.

Corollary 2.2. Let λ ∈ C and suppose the complex distance between α(r+ iθ) and
λα(r + iθ) is t+ iψ. Then

sinh
(

1
2

logλ
)

=
i sinh

(
t+iψ

2

)
sinh(r + iθ)

.

Clearly the setA(t, z, w) is centrally symmetric (that is −A(t, z, w) = A(t, z, w)).
This region is not convex in general (for instance for t small) and, although it will be
convex in the cases of interest to us, we will in practice replace it by a geometrically
simpler region, a disk or ellipse.

Let λ ∈ C \ {0} and let γ1, γ2, . . . , γk be geodesics with endpoints in C \ {0},
and put

δi = δ(γi),(3)

the associated spectrum of complex distances from I and

ci = log[c(γi)].(4)

Let
P = {λnγi : n ∈ Z, 1 ≤ i ≤ k}
Λ = {n log(λ) + i2πm : n,m ∈ Z}.(5)

The pairwise distances between the geodesics in P exceeds t,

ρ(λnγi, λmγj) ≥ t(6)

if and only if for all i, j the set

ci +A(t, δi, δj)(7)

contains no point of cj + Λ except the point ci when i = j.
This effectively reduces to a statement about k points on the torus C/Λ and

the above requires (tacitly identifying points with their images under the quotient
map)

cj 6∈ ci +A(t, δi, δj) (i 6= j).(8)



VOLUMES OF HYPERBOLIC 3-MANIFOLDS 37

The condition (8) puts a lower bound on the distances between cj and cj which
depend on δi, δj and on arg(ci − cj). We will remove this dependence by replacing
A(t, δi, δj) with a large convex centrally symmetric region Ω, usually a disk or
ellipse, in the intersection, ⋂

i,j

A(t, δi, δj).

The reason for doing this can be found in the following easy version of Minkowski’s
theorem.

3. Minkowski’s theorem

Theorem 3.1. Let Λ be a lattice in Rn of covolume V . Let Cij (1 ≤ i, j ≤ k) and
Ci (1 ≤ i ≤ k) be balanced subsets of Rn such that a packing of Rn by translates of
the Ci has density at most ρ and for all i, j,

1
2
Ci +

1
2
Cj ⊆ Cij .(9)

Let Λi, 1 ≤ i ≤ k, be disjoint translates of Λ. Suppose that for all i, j, and each
x ∈ Λi the set x+ Cij contains no point of Λj (other than x itself if i = j). Then∑

i

V ol(Ci) ≤ 2n ρ V.(10)

This estimate is sharp.

Proof. Suppose that in fact
∑

i V ol(Ci) > 2n ρ V . Then of course the set of
translates xi + 1

2Ci, where xi ∈ Λi cannot be disjoint. Hence there are i, j and
distinct xi ∈ Λi, xj ∈ Λj for which

(xi +
1
2
Ci) ∩ (yj +

1
2
Cj) 6= ∅.(11)

Let z ∈ (xi + 1
2Ci) ∩ (yj + 1

2Cj). Then

xi − yj = (xi − z)− (yj − z) ∈ 1
2
Ci +

1
2
Cj ⊂ Cij .

That is, yj ∈ xi + Cij , contrary to our assumption. Sharpness is clear. �

We next want to say a few general things about the set of distances between the
geodesics forming the orbit of a given geodesic under a Kleinian group.

4. The orthospectrum

Let Γ be a Kleinian group. Suppose that the map z 7→ λz is a loxodromic
element of Γ whose axis, the hyperbolic line ` with endpoints 0 and ∞, is precisely
invariant. That is, for each g ∈ Γ, either

g(`) = ` or g(`) ∩ ` = ∅,(12)

in the extended hyperbolic space. Let Γ` denote the stabiliser of ` in Γ. In general
the group Γ` is virtually cyclic and generated by:

(1) a primitive loxodromic element z 7→ µz,
(2) a primitive elliptic of order n, z 7→ e2πi/nz, n ≥ 1, and
(3) possibly an involution z 7→ η/z, for some η ∈ C \ {0}.
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If Γ is torsion free, then cases (2) and (3) above do not occur. Every element f ∈ Γ`
has the form

f(z) = µje2πi k/nz or µje2πi k/nη/z

for some pair of integers j, k, see [3].
If ` is precisely invariant, then the orbit of ` under the group Γ,

Γ(`) = {g(`) : g ∈ Γ},

is partitioned into equivalence classes called orthoclasses. We say γ, γ∗ ∈ Γ(`) are
conjugate if there is g ∈ Γ such that

g(γ) = ` and g(`) = γ∗.(13)

Notice that if γ∗1 , γ∗2 are both conjugates of γ, then there is g ∈ Γ` such that
g(γ∗1) = γ∗2 . An orthoclass O consists of a geodesic γ ∈ Γ(`) together with any
conjugate γ∗ and their orbits under Γ`. That is,

O = {g(γ ∪ γ∗) : g ∈ Γ(`)}.

Associated with an orthoclass O is the complex number rO + iθO defined as the
complex distance between any γi in O and `. It is routine to check well-definedness;
the only issue is with conjugates.

We order the orthoclasses as O(1), O(2) etc., by the numbers rO. We ignore the
trivial orthoclass with rO = 0. The sequence of numbers {rO(j)}∞j=1 is called the
orthospectrum.

We now collect together a few facts we shall need about the orthospectrum.
First, recall the following lemma from [10]; it is a generalisation of a well known
result of Adams [1].

Lemma 4.1. Suppose that γ, γ∗ ∈ O are conjugate. Then γ∗ ∈ Γ`(γ) if and only if
there is a primitive elliptic element h of order two such that h(`) = γ. The distance
between the axis of h and the line ` is rO/2.

A simple consequence of the definition is

Lemma 4.2. Let γ1, γ2 ∈ O(1) and γ1 6= γ2. Then

ρ(γ1, γ2) = rO(1) or ρ(γ1, γ2) ≥ rO(2).

The next lemma is important. It shows that the first case of Lemma 4.2 can
only occur in certain circumstances. It is a refinement of a result in [6]. It is very
interesting to note with regard to related work (see [12]), the occurrence of Kleinian
groups generated by elliptics of orders 2 and 3 in extremal situations again.

Lemma 4.3. Let Γ be a Kleinian group and ` the axis of a loxodromic element of
Γ, let O(i) be the ordered orthoclasses of Γ(`) and let f ∈ Γ such that f(α) = ` for
some α ∈ O(1). Suppose rO(2) > rO(1). Let γ1, γ2 ∈ O(1). Then ρ(γ1, γ2) = rO(1)

if and only if the subgroup 〈f,Γ`〉 contains elliptics of orders 2 and 3.
Indeed, there is h ∈ Γ` such that either fh, fhf−1h−1 or fhfh−1 is elliptic of

order 3.

Proof. Suppose that γ1, γ2 ∈ O(1) and that ρ(γ1, γ2) = rO(1). Let f ∈ Γ such that
f(γ1) = ` and set γ∗1 = f(`). Following [6] we consider two cases.
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Case 1. γ2 ∈ Γ`(γ1). Then γ2 = h1(γ1), h1 ∈ Γ`. As

ρ(f(γ2), `) = ρ(γ2, f
−1(`)) = ρ(γ2, γ1) = rO(1) < rO(2),

we must have f(γ2) ∈ O(1). Thus f(γ2) is a translate of either γ1 or γ∗1 by an
element of Γ`. In the first case, f(γ2) = h2(γ1), h2 ∈ Γ`, whence fh1f

−1(`) =
h2f

−1(`) and so there is h3 ∈ Γ` such that

fh1f
−1 = h2f

−1h3, hi ∈ Γ`.(14)

Similarly, if f(γ2) = h2(γ∗1 ), we again consider the orbit of ` to find

fh1f
−1 = h2fh3, hi ∈ Γ`.(15)

Case 2. γ2 ∈ Γ`(γ∗1 ). Then γ2 = h1(γ∗1 ), h1 ∈ Γ`. Then h1f(γ1) = ` and h1f(`) =
γ2. As before γ3 = f−1h−1

1 (γ1) ∈ O(1) as ρ(γ3, `) = ρ(γ1, `). Then, as before, γ3 is
a translate of γ1 or γ∗1 by an element of Γ(`). γ3 = h2(γ1) leads to the relation

f−1h−1
1 f−1 = h2f

−1h3, hi ∈ Γ`,(16)

while if γ3 = h2(γ∗1 ), we obtain the relation

f−1h−1
1 f−1 = h2fh3, hi ∈ Γ`.(17)

The relators in (14),(15),(16) and (17) all have a similar form. In (14) we put
g = f−1h2 and rearrange to find ugv = g2, u, v ∈ Γ`. In (15) we put g = h3f
to again find ugv = g2, u, v ∈ Γ` (for different u, v of course). In (16) we put
g = h−1

1 f−1 to once again get ugv = g2, u, v ∈ Γ`. Finally, in (17) we put g = h1f
to find the slightly different relator ugv = g−2, u, v ∈ Γ`. In all four cases, the
element g 6∈ Γ`. �

We next study the matrix equations corresponding to the relators above. The
result we want follows from the next lemma which gives rather more precise infor-
mation.

Lemma 4.4. Suppose that Γ = 〈f, g, h〉 is a Kleinan group, that g, h stabilise a
hyperbolic line ` and that f(`) ∩ ` = ∅, in the extended hyperbolic space. Suppose
that for some choice of sign ε = ± the equation,

gfh = f ε2,(18)

holds in Γ; then Γ is generated by elliptic elements of orders 2 and 3. Indeed:

• If neither g nor h is of order 2, then g = h, f is elliptic of order 3, fg is
elliptic of order 2, and gfg = f2.
• If h is of order 2, then gfg−1f−1 is elliptic of order 3 and g−1f has order

2 when ε = + and gfg−1f is elliptic of order 3 and fh has order 2 when
ε = −.
• If g and h are of order 2, then g = h and f is elliptic of order 3.

The proof we offer is found by studying all solutions of this matrix equation after
appropriate normalisations are made (see §8).
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5. Manifold volumes

In this section we give an elementary bound for the volume of a hyperbolic
3–manifold and develop a formula which we use to prove the main results of the
paper. The volume estimate was, at the time of writing, best known. However a
recent innovative approach has been found by Algol [2] which gives the lower bound
0.32. Computer experiments suggest that our arguments can be further refined to
give better bounds than those we offer here. However the cost is in much greater
expenditure of computer time and a much deeper error analysis to obtain rigour.

Theorem 5.1. Let Γ be a torsion free Kleinian group and let ` be a precisely
invariant loxodromic axis. Let log 3 < r = rO(1) < 4 and t = rO(2) < 2r. Then

V ol(H3/Γ) ≥ V1(r, t) = 2
√

3 sinh2
( r

2

)
F (r, t)(19)

where

F (r, t) = arcsinh
(

sinh(t/2)
cosh(r)

)√
arcsinh2

(
sinh(t/2)
cosh(r)

)
+ arcsin2

(
1

cosh(r)

)
.

Proof. For each r, θ (z = r + iθ) and t in this range and following [10] we would
like to find the ellipse of largest area, or more precisely a good approximation to
such an ellipse, lying in the region enclosed by the curve

E(z, t) = arcsinh
(
i sinh(t/2 + iψ)

sinh(r + iθ)

)
, 0 < ψ < 2π.(20)

We can find a disk lying interior to this region. Namely, as∣∣∣∣ i sinh(t/2 + iψ)
sinh(r + iθ)

∣∣∣∣ ≥ sinh(t/2)
| sinh(r + iθ)|(21)

and as | sinh(w)| ≤ sinh |w|, it is clear that the disk of radius

s = arcsinh
(

sinh(t/2)
| sinh(r + iθ)|

)
≥ arcsinh

(
sinh(t/2)
cosh(r)

)
whose center lies at the origin is such a disk.

Our interest is in those r in the interval [log(3), 4] and there it is not difficult to
see the above estimate is not particularly good and that much better ellipses can
be found. However, obtaining an analytic proof for a formula escaped us, and so
we took a computational approach. There is considerable numerical instability in
dealing with functions like arcsinh and it is for this reason we adopted the following
plan.

First, for a given z = r+iθ and t we construct a candidate ellipse Ez,t by guessing
the axes and determining appropriate foci. Our guess for the minor axis will be
the radius of the inscribed disk centered at the origin, the foci will lie on the line
through the origin perpendicular to the points of tangency with this inscribed disk
and the region E(z, t) and the major axis will be determined by what we consider
to be the worst case. Preliminary computer experimentation suggests that given r
in the range of interest to us, the region containing the ellipse of smallest area is
that where θ = π/2. Further experimentation suggests this ellipse has area at least

A = 4πF (r, t).(22)
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All the ellipses we construct for given r and t will then have this area, up to our
computational error which we shall bound rigorously. It is here that improvements
can be made. For any given values of θ, r and t, it appears that ellipses of larger
area exist. However, using these larger ellipses doesn’t give enough slack for our
elementary error analysis to work well.

Next, any set E ⊂ E(z, t) if for all ζ ∈ ∂E,

H(ζ, z, t) = | sinh(ζ) sinh(z) + 1|+ | sinh(ζ) sinh(z)− 1| − 2 cosh(t/2) < 0.
(23)

One can easily obtain Lipschitz bounds on H(ζ, z, t) using the inequality

|H(ζ, z, t)−H(ζ′, z, t)| ≤ 2| sinh(z)|| sinh(ζ) − sinh(ζ′)|
≤ 2| sinh(z)|| cosh(η)||ζ − ζ′|

(24)

for some point η ∈ [ζ, ζ′]. Also we have, using first order Taylor series,

|H(ζ, z, t)−H(ζ, z′, t′)|
≤ 2| sinh(ζ)|| sinh(z)− sinh(z′)|+ sinh(t′′/2)|t− t′|
≤ 2| sinh(ζ)|| cosh(z′′)||z − z′|+ sinh(t′′/2)|t− t′|

(25)

for some z′′ ∈ [z, z′] and t′′ ∈ [t, t′]. Of course the inequality will persist if we choose
t′′ = max{t, t′} and z′′ = max{<(z),<(z′)}.

We must verify our formula in the range

log(3) < r < 4, 0 ≤ θ < π/2 and r < t < 2r.(26)

The Lipschitz bounds at (24) are sufficient to give reliable estimates for a fine search
of this region. To this end we choose δ > 0 and consider the box

Q = Qδ(z, t) = [r − δ, r]× [θ, θ + δ]× [t− δ, t].(27)

Then we have for (z′, t′) ∈ Q,

|H(ζ, z, t)−H(ζ, z′, t′)| ≤
(

2
√

2| sinh(ζ)|| cosh(r + iθ)|+ sinh(t/2)
)
δ.

(28)

Therefore,

H(ζ, z, t) < −
(

2
√

2| sinh(ζ)|| cosh(r + iθ)|+ sinh(t/2)
)
δ(29)

implies that
ζ ∈ E(z′, t′), for all (z′, t′) ∈ Q.

Hence, for a given z, t and δ, we seek to verify that (29) holds for all ζ ∈ Ez,t.
Then of course this ellipse works for all (z′, t′) ∈ Q. That is Ez,t ⊂ E(z′, t′). The
inequality (29) is what we test numerically for a candidate ellipse. We now seek a
good candidate.

5.1. A candidate ellipse. There are no computational issues in identifying a
candidate ellipse, only in establishing its purported properties. We begin by finding
the best inscribed disk. A pair of antipodal points on this disk at points of tangency
with curve defining the region give us our candidate minor axis, whose normal
should define the major axis. We seek to minimise the function |f |2 where

f(ψ) = arcsinh
(
i sinh(t/2 + iψ)

sinh(r + iθ)

)
.(30)
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The derivative with respect to ψ is

∂|f |2
∂ψ

= −2<

 cosh(t/2 + iψ)√
sinh2(r + iθ)− sinh2(t/2 + iψ)

f(ψ)

 .(31)

We use the secant method to quickly identify a root ψ0 of this equation in the
interval [0, π/2]. For values of θ away from π/2 this root appears to be the minimum;
near π/2 we use the secant method to identify a root in [π/2, π] which appears to
be the minimum in this case. This switch in roots is clear geometrically as these
elliptical regions rotate. We now propose that the minor axis of a candidate ellipse
is the line segment [−f(ψ0), f(ψ0)]. Set a = f(ψ0). An ellipse with this minor axis
cannot satisfy (29) as it is, by construction, tangent to the region at the point a.
To get (29) we must scale this ellipse down and therefore we multiply a by a factor
less than one, aε = (1 − ε)a. The major axis is perpendicular to this axis. We
choose the length to be

|b| = max{A/(π|aε|), |aε|}(32)

where A is defined at (22). The proposed candidate ellipse is then parameterised
by

Ez,t = {ζ =
a

|a| (|aε| cos(ψ) + i|b| sin(ψ)) : 0 ≤ ψ < 2π}

whose area is clearly A. Now given our ε > 0 and z = r + iθ and t we put

ζε(ψ) =
a

|a| (|aε| cos(ψ) + i|b| sin(ψ)).(33)

5.2. Computation. The Lipschitz estimate (24) gives us∣∣∣∣ ∂∂ψ H(ζε(ψ), z, t)
∣∣∣∣ ≤ 2| sinh(z)|| cosh(ζε(ψ))| |ζε(ψ + π/2)|.(34)

In our range of interest |ζε| < 1 and |ζε| decreases as r increases. Ultimately we want
our volume estimate to be accurate to three decimal places. We have set things up
so that we expect this minimum to occur at ψ = 0 (where the point of tangency with
the unscaled ellipse is) and this makes determining the minimum computationally
somewhat simpler using the derivative bounds at (34). The expected minimum is
therefore the value F ((1− ε)a, z, t), which from (29) gives us

δ = −F ((1− ε)a, z, t)/
(

2
√

2| sinh((1 − ε)a)|| cosh(r + iθ)|+ sinh(t/2)
)
.

All the variables controlling the numerical error have thus been determined. We
implemented this search using a few lines of code in Mathematica. Thus

Lemma 5.1. The region E(r + iθ, r + iθ, t) contains an ellipse of area 4πF (r, t).

The following lemma is routinely verified by machine.

Lemma 5.2. The function 2
√

3 sinh2
(
r
2

)
F (r, t) is increasing in r and t.

Next, choose α ∈ O(1) and denote its conjugate by α∗. The orbits of α and α∗

under the stabiliser Γ` = 〈z 7→ λnz〉 are disjoint and, since t ≥ r and there are no
elliptics of order 3 in Γ, no two distinct elements of these orbits are closer than the
distance t. We may assume the point c(α) = 1 and set c = log(c(α∗)). According to
(7) the ellipse of the preceding corollary contains no points, other than the origin,
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of the lattices Λ and c + Λ, where Λ is defined at (5). Notice that if λ = eτ+iψ,
then

Area(C/Λ) = 2πτ.

Now Minkowski’s theorem, Theorem 3.1 gives

2πτ ≥ 4
√

3F (r, t)(35)

where we have used the fact that the optimal density of packings by congruent
ellipses in the plane is π/

√
12. It follows that

πτ sinh2
(r

2

)
≥ 2
√

3F (r, t) sinh2
(r

2

)
.(36)

The right-hand side of this equation represents the volume of the solid tube of
length τ and radius r,

C(`, r)/Γ` = πτ sinh2
( r

2

)
(37)

where C(`, r) = {x ∈ H3 : ρ(x, `) ≤ r}. The precise invariance of ` implies H3/Γ ≥
C(`, r)/Γ`. The result follows. �

Corollary 5.1. A hyperbolic 3–manifold has volume at least 0.2855.

Proof. Gabai, Meyerhoff and Thurston have classified all hyperbolic 3–manifolds
which do not contain an embedded tubular neighbourhood of radius (log 3)/2 about
their shortest geodesic [7]. Each such manifold has volume at least that of the
Weeks manifold, and so we assume that the shortest geodesic has an embedded
tubular neighbourhood of at least r = (log 3)/2. We set t = r. The lift of the
shortest geodesic is a precisely invariant loxodromic axis ` for which we must have
rO(1) > log 3. We use the volume formula in the specified range of Theorem 5.1.
For larger values of r the easy estimate

| sinh(u)− sinh(v)| + | sinh(u) + sinh(v)| ≤ 2 sinh
(
|u− v|+ |u+ v|

2

)
(38)

identifies an ellipse with foci ±v, v = arcsinh
(

1
sinh(r+iθ)

)
, which in turn gives good

enough bounds. We leave the reader to develop the simple accompanying volume
estimate. (We use this simple estimate later as well for larger values of r and t.)
The corollary now follows from the preceding theorem and lemma. �

Following [6] we want to use the volume formula at (19) in the following way.
If rO(1) = rO(2), then we can essentially double the above estimate by choosing
β, β∗ ∈ O(2) and producing two more lattices which do not meet our inscribed
ellipse. A little care is needed here since the complex distances might not be the
same even though the real distances are. We set

∆ = rO(2) − rO(1).(39)

If ∆ is small, then the above doubling argument needs to be slightly refined to
produce a good result, while if ∆ is large, that is t � r, then the above estimate
is already good. We now turn to refine this volume estimate. We begin with the
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general formula of Theorem 2.1. We first observe∣∣∣∣cosh(r + iθ) cosh(s+ iφ)− cosh(t+ iψ)
sinh(r + iθ) sinh(s+ iφ)

− 1
∣∣∣∣

=
∣∣∣∣cosh(r − s+ iθ − iφ)− cosh(t+ iψ)

sinh(r + iθ) sinh(s+ iφ)

∣∣∣∣
≥ cosh(t)− cosh(r − s)

cosh(r) cosh(s)
= κ,

the last inequality being an exercise in calculus.
Hence the ellipse E(r+ iθ, s+ iφ, t) contains the disk D(1, κ). We then have the

next lemma.

Lemma 5.3. For all 0 ≤ θ, φ ≤ 2π, and z = r + iθ, w = s + iφ and t > 0 with
t > r − s, the region A(t, z, w) contains a disk of radius

arccosh
(

1 +
cosh(t)− cosh(r − s)

cosh(r) cosh(s)

)
centered at the origin.

We apply this lemma as follows: we have α, α∗ ∈ O(1) and so choose β, β∗ ∈
O(2). The orbits of these four geodesics are pairwise disjoint and no two are closer
than the distance rO(1). As before we assume that c(α) = 1 and set c1 = log(c(α∗)),
c2 = log(c(β)) and c3 = log(c(β∗)). Now, as before, (7) shows us the disk of radius

κ(∆) = arccosh
(

1 +
cosh(rO(1))− cosh(∆)

cosh(rO(1)) cosh(rO(1) + ∆)

)
(40)

centered at one point of the four lattices Λ, c1 + Λ, c2 + Λ and c3 + Λ contains no
other point of these four lattices. Minkowski’s theorem, Theorem 3.1 gives

2πτ ≥ 2
√

3κ2(∆)(41)

using the optimal density estimate again. It follows that

πτ sinh2
(r

2

)
≥ V2(r,∆) =

√
3κ2(∆) sinh2

(r
2

)
.(42)

We have proved the following theorem.

Theorem 5.2. Let Γ be a torsion free Kleinian group and let ` be a precisely
invariant loxodromic axis. Let r = rO(1) and t = rO(2). Then

V ol(H3/Γ) ≥ V2(r, t− r).(43)

As κ2(∆) is clearly decreasing in ∆ this estimate get worse as ∆ increases, while
our previous estimate gets better.

The next theorem improves a result of [6]. It is obtained by balancing these two
estimates of (19) and (43).

Theorem 5.3. If M is a hyperbolic 3–manifold that contains an embedded solid
tube of radius r0 = 1.31 about a closed geodesic, then M has volume greater than
that of the Weeks manifold.

Proof. We lift this closed geodesic and consider its orthospectrum. We have rO(1) >
2.62 = 2r0. Suppose ∆ ≤ 0.275. Then Theorem 5.1 provides a volume bound of
0.943, while if ∆ ≥ 0.275 Theorem 5.2 provides a similar bound. Again, if rO(1) > 4,
we use the elementary volume estimates from the inscribed disk. �
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Remark. The two noncompact orientable hyberbolic 3–manifolds of minimal vol-
ume have been identified as the Figure of 8 knot compliment and its sister by
Cao–Meyerhoff, [5]. The above results have some relevance here. If the distance
between elements of O(1) and O(2) exceeds rO(1) (note it cannot be smaller than
this number), then we have the improved estimate

κ(∆) ≥ arccosh
(

1 +
cosh(rO(1) + ∆)− cosh(∆)
cosh(rO(1)) cosh(rO(1) + ∆)

)
.(44)

The associated volume estimate
√

3κ2(∆) sinh2
(rO(1)

2

)
(45)

has the limit
√

3 independently of ∆ as rO(1) →∞.

As soon as ∆ ≥ log 2 we also have V1(rO(1), rO(1) + log(2))→
√

3.
We recall from [14] that the optimal packing density of hyperbolic cylinders of

radius r cannot exceed (1 + 23e−r)ρ∞ where ρ∞ = 0.853276 . . . is the greatest
possible density of a horoball packing in space. Our estimates above represent only
the volume contributed by the cylinders about the orbit of the geodesic in question
and therefore can be improved by this density factor. The limit volume (under
the above restriction) is

√
3/ρ∞ = 2.02 . . . = V8, the volume of the Figure 8 knot

compliment.
We were hoping that this method would provide an alternative route to (part of)

the results of [5] by considering sequences of surgeries on the cusp of a candidate
manifold, given that the sharp bound for the distances between the elliptic axes
is known, [9, 6]. The estimates above would then imply that cylinders of radius
rO(1)/2 about elements of O(1) and O(2) are tangent which, in the limit, puts
restrictions on the limit horoball packing. However these do not seem to simplify
much of [5] and have the further disadvantage of not identifying the limit manifolds
(just their volumes).

6. Short geodesics

It is well known that sufficiently short geodesics in a hyperbolic 3–orbifold have
an embedded tubular neighbourhood about them. This fact is a relatively straight-
forward consequence of Jørgensen’s inequality [13] and good bounds were obtained
by Meyerhoff in [15]. Such estimates have since been sharpened and the following
result is known, [11].

Theorem 6.1. Let f ∈ Γ, a Kleinian group, be a loxodromic element with trans-
lation length τ . Then there is a precisely invariant collar about the axis ` of f of
radius r where

sinh2(r) ≥
√

3− 4
√

3πτ
4πτ

− 1
2
.(46)

Proof. Let g ∈ Γ with g(`) 6= ` and δ = ρ(`, g(`)). From [11] §4

sinh2(δ/2) ≥
√
|tr[ghg−1h−1]− 2|
|tr2(h)− 4| − 1

2
where h is any element of Γ`. Then [11] Lemma 4.7 implies there is h ∈ Γ` with

|tr2(h)− 4| ≤ 4πτ√
3
.(47)
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Of course Jørgensen’s inequality implies |tr[ghg−1h−1]−2| > 1−|tr2(h)−4| which
gives the general bound (46). �

Next, recall that we in fact have two lower bounds on τ in terms of the first
two elements of the orthospectrum. There are the bounds at (35) and (41). We
are concerned only with the range log(3) ≤ rO(1) ≤ 2.62. Below this range are the
manifolds identified in [6] which have a shortest geodesic of length far exceeding
0.1. While above this range we cannot have a minimal volume example. We com-
pare both these bounds and find that the minimum, given the constraints (namely
V1(r, t),V2(r, t− r) < 0.943) exceeds 0.1. We therefore obtain

Theorem 6.2. Let τ be the length of a shortest geodesic in a minimal volume
hyperbolic 3–manifold. Then

τ > 0.1.(48)

7. Proof of Theorem 2.1

Recall the cross ratio of four complex numbers [a, b, c, d] = (a−c)(b−d)
(a−b)(c−d) . Let v =

δ(α(z), λα(w)) From [14] Lemma 5.2, or a direct computation, we have

− sinh2(v/2) = [tanh(z/2), coth(z/2), λ tanh(w/2)λ coth(w/2)]

=
(tanh(z/2)− λ tanh(w/2))(coth(z/2)− λ coth(w/2))
λ(tanh(z/2)− coth(z/2))(tanh(w/2)− coth(w/2))

= λ−1(cosh(w/2) sinh(z/2)− λ sinh(w/2) cosh(z/2))

(cosh(z/2) sinh(w/2)− λ sinh(z/2) cosh(w/2)).

Let us put

a = sinh2(
r + iθ

2
), b = sinh2(

s+ iφ

2
).

We obtain the quadratic for λ,

1 + λ
(v − b(a+ 1)− a(b+ 1))√

b(a+ 1)a(b+ 1)
+ λ2 = 0.(49)

Then, since the roots are reciprocals,

λ+
1
λ

= − (v − b(a+ 1)− a(b + 1))√
b(a+ 1)a(b+ 1)

.(50)

Notice that 4a(a+1) = 4 sinh2(z/2) cosh2(z/2) = sinh2(z) and similarly 4b(b+1) =
sinh2(w). While

a(b+ 1) + b(a+ 1)

= sinh2(z/2) cosh2(w/2) + cosh2(z/2) sinh2(w/2)

=
1
2

(cosh(z) cosh(w)− 1) .

This, together with the above, gives

1
2

(
λ+

1
λ

)
=

cosh(z) cosh(w) − cosh(v)
sinh(z) sinh(w)

(51)

as desired.
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8. Proof of Lemma 4.4

Proof. The proof consists of considering the solutions to the corresponding matrix
equation in SL(2,C). We may assume that g and h stabilise the line with endpoints
0 and ∞. We put

A =
(
a 0
0 1/a

)
, B =

(
b 0
0 1/b

)
, C =

(
0 c
−1/c 0

)
, D =

(
0 d
−1/d 0

)
and

X =
(

x 1
xy − 1 y

)
.

Representatives for g and h may be chosen from A,B,C,D while the representative
for f is X . Various symmetries reduce us to considering the six cases

AXB = X±2, AXC = X±2, CXD = X±2.

We choose a couple of representative cases, the remainder are left for the reader to
verify—a straightforward calculation using a computational algebra package such
as Mathematica. We first compute

Y = AXB =
(

abx a/b
(xy − 1)b/a y/(ab)

)
,

Z = X2 =
(

x(x+ y)− 1 x+ y
(x + y)(xy − 1) y(x+ y)− 1

)
.

The two equations Y11 = Z11 and Y12 = Z12 imply that

y =
a

b
+

b

a(b2 − 1)
, x =

b

a(1− b2)

which we substitute in. Then the equation Y21 = Z21 gives the possible solutions
b = 0, b = ±a and b = ±

√
(a2 − 1)/a2. Of course b = 0 is not allowed. If

b = ±
√

(a2 − 1)/a2, then we compute that X21 = 0 so f(∞) =∞ and both f and
g share a fixed point on the boundary. This is not possible in a discrete group, [3].
This leaves b = ±a. In that case we compute

X =
(

1/(a2 − 1) 1
−a2/(a2 − 1)

)
, XA =

(
a/(a2 − 1) 1/a

−a/(a2 − 1)

)
,

so that f is elliptic of order 3, g = h and fg has order 2.
The remaining cases proceed in an entirely similar fashion.
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