Distinguishing properties of weak slice conditions
HTML articles powered by AMS MathViewer
- by Stephen M. Buckley and Alexander Stanoyevitch PDF
- Conform. Geom. Dyn. 7 (2003), 49-75 Request permission
Abstract:
The slice condition and the more general weak slice conditions are geometric conditions on Euclidean space domains which have evolved over the last several years as a tool in various areas of analysis. This paper explores some of the finer distinctive properties of the various weak slice conditions.References
-
[BB]BB Z. Balogh and S.M. Buckley, Geometric characterizations of Gromov hyperbolicity, to appear in Invent. Math.
- Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001), viii+99. MR 1829896 [B]B S.M. Buckley, Quasiconformal images of Holder domains, preprint.
- S. Buckley and P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (1995), no. 5, 577–593. MR 1359964, DOI 10.4310/MRL.1995.v2.n5.a5
- Stephen M. Buckley and Pekka Koskela, Criteria for imbeddings of Sobolev-Poincaré type, Internat. Math. Res. Notices 18 (1996), 881–901. MR 1420554, DOI 10.1155/S1073792896000542
- Stephen M. Buckley and Julann O’Shea, Weighted Trudinger-type inequalities, Indiana Univ. Math. J. 48 (1999), no. 1, 85–114. MR 1722194, DOI 10.1512/iumj.1999.48.1592
- Stephen M. Buckley and Alexander Stanoyevitch, Weak slice conditions and Hölder imbeddings, J. London Math. Soc. (2) 64 (2001), no. 3, 690–706. MR 1865557, DOI 10.1112/S002461070100206X
- Stephen M. Buckley and Alexander Stanoyevitch, Weak slice conditions, product domains, and quasiconformal mappings, Rev. Mat. Iberoamericana 17 (2001), no. 3, 607–642. MR 1900897, DOI 10.4171/RMI/306
- F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203–219. MR 802481, DOI 10.5186/aasfm.1985.1022
- F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181–206. MR 833411, DOI 10.1007/BF02792549
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747
- Vesa Lappalainen, $\textrm {Lip}_h$-extension domains, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 56 (1985), 52. MR 822591
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Jussi Väisälä, On the null-sets for extremal distances, Ann. Acad. Sci. Fenn. Ser. A I No. 322 (1962), 12. MR 0147633
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- Jussi Väisälä, Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101–118. MR 927080, DOI 10.2748/tmj/1178228081
- Jussi Väisälä, Quasiconformal maps of cylindrical domains, Acta Math. 162 (1989), no. 3-4, 201–225. MR 989396, DOI 10.1007/BF02392837
- Jussi Väisälä, Relatively and inner uniform domains, Conform. Geom. Dyn. 2 (1998), 56–88. MR 1637079, DOI 10.1090/S1088-4173-98-00022-8
Additional Information
- Stephen M. Buckley
- Affiliation: Department of Mathematics, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Email: sbuckley@maths.may.ie
- Alexander Stanoyevitch
- Affiliation: Division of Mathematical Sciences, University of Guam, Mangilao, Guam 96923, USA
- Email: alex@math.hawaii.edu
- Received by editor(s): October 9, 2001
- Received by editor(s) in revised form: April 10, 2003
- Published electronically: July 17, 2003
- Additional Notes: The first author was partially supported by Enterprise Ireland
- © Copyright 2003 American Mathematical Society
- Journal: Conform. Geom. Dyn. 7 (2003), 49-75
- MSC (2000): Primary 30C65, 46E35
- DOI: https://doi.org/10.1090/S1088-4173-03-00084-5
- MathSciNet review: 1992037