Cusps in complex boundaries of one-dimensional Teichmüller space
HTML articles powered by AMS MathViewer
- by Hideki Miyachi
- Conform. Geom. Dyn. 7 (2003), 103-151
- DOI: https://doi.org/10.1090/S1088-4173-03-00065-1
- Published electronically: September 9, 2003
- PDF | Request permission
Abstract:
This paper gives a concrete proof of the conjectural phenomena on the complex boundary one-dimensional slices: every rational boundary point is cusp shaped. This paper treats this problem for Bers slices, the Earle slice, and the Maskit slice. In proving this, we also show that every Teichmüller modular transformation acting on a Bers slice can be extended as a quasi-conformal mapping on its ambient space. Furthermore, using this extension, we discuss similarity phenomena on the boundaries of Bers slices, and also compare these phenomena with results in complex dynamics. We will also give a result, related to the theory of L. Keen and C. Series, of pleated varieties in quasifuchsian space of once punctured tori.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Lipman Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113–134. MR 192046, DOI 10.1007/BF02392814
- Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600. MR 297992, DOI 10.2307/1970638
- Lipman Bers, Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89–126. MR 430318, DOI 10.1007/BF02392263
- Lipman Bers, The action of the modular group on the complex boundary, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 33–52. MR 624803
- Lipman Bers, Finite-dimensional Teichmüller spaces and generalizations, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 131–172. MR 621883, DOI 10.1090/S0273-0979-1981-14933-8
- Lipman Bers and H. L. Royden, Holomorphic families of injections, Acta Math. 157 (1986), no. 3-4, 259–286. MR 857675, DOI 10.1007/BF02392595
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1183224
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Clifford J. Earle, Some intrinsic coordinates on Teichmüller space, Proc. Amer. Math. Soc. 83 (1981), no. 3, 527–531. MR 627684, DOI 10.1090/S0002-9939-1981-0627684-5
- C. J. Earle, I. Kra, and S. L. Krushkal′, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), no. 2, 927–948. MR 1214783, DOI 10.1090/S0002-9947-1994-1214783-6
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR 903852
- Frederick P. Gardiner, Schiffer’s interior variation and quasiconformal mapping, Duke Math. J. 42 (1975), 371–380. MR 382637
- Frederick W. Gehring, Characteristic properties of quasidisks, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 84, Presses de l’Université de Montréal, Montreal, Que., 1982. MR 674294
- F. W. Gehring and G. J. Martin, Iteration theory and inequalities for Kleinian groups, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 57–63. MR 974424, DOI 10.1090/S0273-0979-1989-15761-3
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Dennis A. Hejhal, Monodromy groups and linearly polymorphic functions, Acta Math. 135 (1975), no. 1, 1–55. MR 463429, DOI 10.1007/BF02392015
- Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
- Kentaro Ito, Exotic projective structures and quasi-Fuchsian space, Duke Math. J. 105 (2000), no. 2, 185–209. MR 1793610, DOI 10.1215/S0012-7094-00-10521-2 Jo T. Jørgensen, On pair of once punctured tori, Preprint.
- Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719–749. MR 1241870, DOI 10.1016/0040-9383(93)90048-Z
- Linda Keen and Caroline Series, The Riley slice of Schottky space, Proc. London Math. Soc. (3) 69 (1994), no. 1, 72–90. MR 1272421, DOI 10.1112/plms/s3-69.1.72 KS99 —, Pleating invariants for punctured torus groups, to appear in Topology.
- Linda Keen, Bernard Maskit, and Caroline Series, Geometric finiteness and uniqueness for Kleinian groups with circle packing limit sets, J. Reine Angew. Math. 436 (1993), 209–219. MR 1207287
- Steven P. Kerckhoff and William P. Thurston, Noncontinuity of the action of the modular group at Bers’ boundary of Teichmüller space, Invent. Math. 100 (1990), no. 1, 25–47. MR 1037141, DOI 10.1007/BF01231179 Ko Y. Komori, Minsky’s pivot theorem and its application to the Earle slice of punctured torus groups. Hyperbolic spaces and related topics (S. Kamiya, ed.), RIMS, Kokyouroku, Kyoto Univ. 110 (1999), 91–102. KoS Y. Komori and C. Series, Pleating coordinates for the Earle embedding. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), 69–105. KSWY Y. Komori, T. Sugawa, M. Wada, and Y. Yamashita, Discreteness locus in projective structures, http://www.kusm.kyoto-u.ac.jp/complex/Bers /
- Irwin Kra, Nonvariational global coordinates for Teichmüller spaces, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 221–249. MR 955843, DOI 10.1007/978-1-4613-9611-6_{1}6
- Irwin Kra, Horocyclic coordinates for Riemann surfaces and moduli spaces. I. Teichmüller and Riemann spaces of Kleinian groups, J. Amer. Math. Soc. 3 (1990), no. 3, 499–578. MR 1049503, DOI 10.1090/S0894-0347-1990-1049503-1
- Irwin Kra and Bernard Maskit, Bases for quadratic differentials, Comment. Math. Helv. 57 (1982), no. 4, 603–626. MR 694607, DOI 10.1007/BF02565877
- Lei Tan, Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys. 134 (1990), no. 3, 587–617. MR 1086745, DOI 10.1007/BF02098448
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Mikhail Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. of Math. (2) 149 (1999), no. 2, 319–420. MR 1689333, DOI 10.2307/120968
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- Katsuhiko Matsuzaki and Masahiko Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1638795
- Curt McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of Math. (2) 125 (1987), no. 3, 467–493. MR 890160, DOI 10.2307/1971408
- Curt McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of Math. (2) 125 (1987), no. 3, 467–493. MR 890160, DOI 10.2307/1971408
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347, DOI 10.1515/9781400865178
- Curtis T. McMullen, Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998), no. 2, 283–320. MR 1478844, DOI 10.1090/S0894-0347-98-00259-8
- Gaven J. Martin, On the geometry of Kleinian groups, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995) Springer, New York, 1998, pp. 253–274. MR 1488454, DOI 10.1007/978-3-0348-8819-6
- John Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account, Astérisque 261 (2000), xiii, 277–333 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755445
- Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), no. 2, 559–626. MR 1689341, DOI 10.2307/120976
- Hideki Miyachi, On the horocyclic coordinate for the Teichmüller space of once punctured tori, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1019–1029. MR 1873775, DOI 10.1090/S0002-9939-01-06170-6 M2 —, On cusps in the boundaries of the Earle slice and the Maskit slice for once punctured torus groups, preprint (1999). MMcW D. Mumford, C. T. McMullen, and D. J. Wright, Limit sets of free two-generator Kleinian groups, Preprint, Version 0.95 (1990). O J. P. Otal, Sur le coeur convexe d’une variété hyperbolique de dimension 3, preprint.
- John R. Parker and Caroline Series, Bending formulae for convex hull boundaries, J. Anal. Math. 67 (1995), 165–198. MR 1383492, DOI 10.1007/BF02787788 Pe P.Liepa, http://reality.sgi.com/pliepa_tor/slices.html
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7 R1 J. Rivera, On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math. 170, 287–317. R2 —, Similarity between the Mandelbrot set and Julia sets and hairiness, preprint.
- Hiroshige Shiga, Projective structures on Riemann surfaces and Kleinian groups, J. Math. Kyoto Univ. 27 (1987), no. 3, 433–438. MR 910228, DOI 10.1215/kjm/1250520657
- Toshiyuki Sugawa, The Bers projection and the $\lambda$-lemma, J. Math. Kyoto Univ. 32 (1992), no. 4, 701–713. MR 1194110, DOI 10.1215/kjm/1250519403
- Perry Susskind, Kleinian groups with intersecting limit sets, J. Analyse Math. 52 (1989), 26–38. MR 981494, DOI 10.1007/BF02820470
- Dennis P. Sullivan and William P. Thurston, Extending holomorphic motions, Acta Math. 157 (1986), no. 3-4, 243–257. MR 857674, DOI 10.1007/BF02392594
- Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), no. 2, 347–355. MR 1037218, DOI 10.1090/S0002-9939-1991-1037218-8 Wada M. Wada, OPTi3.0, http://vivaldi.ics.nara-wu.ac.jp/˜wada/OPTi/ W D. J. Wright, The shape of the boundary of Maskit’s embedding of the Teichmüller space of once punctured tori, Preprint, Version 0.8 (1988). Wr —, http://www.math.okstate.edu/˜wrightd/ Ya Y. Yamashita, Pictures, http://vivaldi.ics.nara-wu.ac.jp/˜yamasita/Slice/
Bibliographic Information
- Hideki Miyachi
- Affiliation: Department of Mathematics, Osaka City University, Sumiyoshi, Osaka, 558-8585, Japan
- Address at time of publication: Graduate School of Science, Department of Mathematics, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka, 560-0023, Japan
- MR Author ID: 650573
- Email: miyaji@sci.osaka-cu.ac.jp, miyaji@gaia.math.wani.osaka-u.ac.jp
- Received by editor(s): July 2, 2000
- Received by editor(s) in revised form: February 20, 2003
- Published electronically: September 9, 2003
- Additional Notes: This work was done when the author was partially supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.
- © Copyright 2003 American Mathematical Society
- Journal: Conform. Geom. Dyn. 7 (2003), 103-151
- MSC (2000): Primary 30F40, 30F60; Secondary 37F30, 37F45
- DOI: https://doi.org/10.1090/S1088-4173-03-00065-1
- MathSciNet review: 2023050
Dedicated: Dedicated to my father Kenji Miyachi for his 60th Birthday