## Bers embedding of the Teichmüller space of a once-punctured torus

HTML articles powered by AMS MathViewer

- by Yohei Komori and Toshiyuki Sugawa
- Conform. Geom. Dyn.
**8**(2004), 115-142 - DOI: https://doi.org/10.1090/S1088-4173-04-00108-0
- Published electronically: June 8, 2004
- PDF | Request permission

## Abstract:

In this note, we present a method of computing monodromies of projective structures on a once-punctured torus. This leads to an algorithm numerically visualizing the shape of the Bers embedding of a one-dimensional Teichmüller space. As a by-product, the value of the accessory parameter of a four-times punctured sphere will be calculated in a numerical way as well as the generators of a Fuchsian group uniformizing it. Finally, we observe the relation between the Schwarzian differential equation and Heun’s differential equation in this special case.## References

- Lars V. Ahlfors,
*Complex analysis*, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR**510197** - Alan F. Beardon,
*Iteration of rational functions*, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR**1128089**, DOI 10.1007/978-1-4612-4422-6 - Lipman Bers,
*Uniformization, moduli, and Kleinian groups*, Bull. London Math. Soc.**4**(1972), 257–300. MR**348097**, DOI 10.1112/blms/4.3.257 - Adrien Douady and Clifford J. Earle,
*Conformally natural extension of homeomorphisms of the circle*, Acta Math.**157**(1986), no. 1-2, 23–48. MR**857678**, DOI 10.1007/BF02392590 - D. B. A. Epstein and A. Marden,
*Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces*, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR**903852** - Frederick P. Gardiner,
*Schiffer’s interior variation and quasiconformal mapping*, Duke Math. J.**42**(1975), 371–380. MR**382637** - G. H. Hardy and E. M. Wright,
*An introduction to the theory of numbers*, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR**568909** - Joachim A. Hempel,
*On the uniformization of the $n$-punctured sphere*, Bull. London Math. Soc.**20**(1988), no. 2, 97–115. MR**924235**, DOI 10.1112/blms/20.2.97 - Einar Hille,
*Ordinary differential equations in the complex domain*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR**0499382** - Y. Imayoshi and M. Taniguchi,
*An introduction to Teichmüller spaces*, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR**1215481**, DOI 10.1007/978-4-431-68174-8 - Kentaro Ito,
*Exotic projective structures and quasi-Fuchsian space*, Duke Math. J.**105**(2000), no. 2, 185–209. MR**1793610**, DOI 10.1215/S0012-7094-00-10521-2 - Linda Keen,
*Teichmueller spaces of punctured tori. I, II*, Complex Variables Theory Appl.**2**(1983), no. 2, 199–211, 213–225. MR**725269**, DOI 10.1080/17476938308814042 - L. Keen, H. E. Rauch, and A. T. Vasquez,
*Moduli of punctured tori and the accessory parameter of Lamé’s equation*, Trans. Amer. Math. Soc.**255**(1979), 201–230. MR**542877**, DOI 10.1090/S0002-9947-1979-0542877-9
KS98P L. Keen and C. Series, - Linda Keen and Caroline Series,
*Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori*, Topology**32**(1993), no. 4, 719–749. MR**1241870**, DOI 10.1016/0040-9383(93)90048-Z - Steven P. Kerckhoff,
*Lines of minima in Teichmüller space*, Duke Math. J.**65**(1992), no. 2, 187–213. MR**1150583**, DOI 10.1215/S0012-7094-92-06507-0 - Yohei Komori and Caroline Series,
*Pleating coordinates for the Earle embedding*, Ann. Fac. Sci. Toulouse Math. (6)**10**(2001), no. 1, 69–105 (English, with English and French summaries). MR**1928990**, DOI 10.5802/afst.985
KSWY99 Y. Komori, T. Sugawa, M. Wada, and Y. Yamashita, - Irwin Kra,
*A generalization of a theorem of Poincaré*, Proc. Amer. Math. Soc.**27**(1971), 299–302. MR**301189**, DOI 10.1090/S0002-9939-1971-0301189-7 - Irwin Kra,
*Accessory parameters for punctured spheres*, Trans. Amer. Math. Soc.**313**(1989), no. 2, 589–617. MR**958896**, DOI 10.1090/S0002-9947-1989-0958896-0 - Irwin Kra and Bernard Maskit,
*Remarks on projective structures*, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 343–359. MR**624824** - Samuel L. Krushkal,
*Teichmüller spaces are not starlike*, Ann. Acad. Sci. Fenn. Ser. A I Math.**20**(1995), no. 1, 167–173. MR**1304114** - Ilpo Laine and Tuomas Sorvali,
*Local solutions of $w''+A(z)w=0$ and branched polymorphic functions*, Results Math.**10**(1986), no. 1-2, 107–129. MR**869803**, DOI 10.1007/BF03322368 - Bernard Maskit,
*On a class of Kleinian groups*, Ann. Acad. Sci. Fenn. Ser. A I**442**(1969), 8. MR**0252638** - Curt McMullen,
*Rational maps and Kleinian groups*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 889–899. MR**1159274** - Curtis T. McMullen,
*Complex earthquakes and Teichmüller theory*, J. Amer. Math. Soc.**11**(1998), no. 2, 283–320. MR**1478844**, DOI 10.1090/S0894-0347-98-00259-8 - Yair N. Minsky,
*The classification of punctured-torus groups*, Ann. of Math. (2)**149**(1999), no. 2, 559–626. MR**1689341**, DOI 10.2307/120976
Miyachi01 H. Miyachi, - Subhashis Nag,
*The complex analytic theory of Teichmüller spaces*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR**927291**
Okum00 Y. Okumura, - R. Michael Porter,
*Computation of a boundary point of Teichmüller space*, Bol. Soc. Mat. Mexicana (2)**24**(1979), no. 1, 15–26. MR**579666** - A. Ronveaux (ed.),
*Heun’s differential equations*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by F. M. Arscott, S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A. Duval. MR**1392976** - H. L. Royden,
*Automorphisms and isometries of Teichmüller space*, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 369–383. MR**0288254** - Hiroshige Shiga,
*Projective structures on Riemann surfaces and Kleinian groups*, J. Math. Kyoto Univ.**27**(1987), no. 3, 433–438. MR**910228**, DOI 10.1215/kjm/1250520657 - Hiroshige Shiga and Harumi Tanigawa,
*Projective structures with discrete holonomy representations*, Trans. Amer. Math. Soc.**351**(1999), no. 2, 813–823. MR**1443890**, DOI 10.1090/S0002-9947-99-02043-7 - Toshiyuki Sugawa,
*Estimates of hyperbolic metric with applications to Teichmüller spaces*, Kyungpook Math. J.**42**(2002), no. 1, 51–60. MR**1915906** - Masahiko Toki,
*On nonstarlikeness of Teichmüller spaces*, Proc. Japan Acad. Ser. A Math. Sci.**69**(1993), no. 3, 58–60. MR**1222823** - Pekka Tukia,
*Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group*, Acta Math.**154**(1985), no. 3-4, 153–193. MR**781586**, DOI 10.1007/BF02392471
WrightM D. J. Wright,

*Pleating invariants for punctured torus groups*, Warwick University preprint, 10/1998.

*Drawing Bers embeddings of the Teichmüller space of once-punctured tori*, preprint.

*Cusps in complex boundaries of one-dimensional Teichmüller spaces*, Conform. Geom. Dyn.

**7**(2003), 103–151.

*Lifting problem of Fuchsian groups and a characterization of simple dividing loops on Riemann surfaces*, in preparation. Pizer:num S. M. Pizer,

*Numerical Computing and Mathematical Analysis*, Science Research Associates, 1975.

*The shape of the boundary of Maskit’s embedding of the Teichmüller space of once punctured tori*, unpublished manuscript.

## Bibliographic Information

**Yohei Komori**- Affiliation: Department of Mathematics, Osaka City University, Sugimoto 3-3-138 Sumiyoshi-ku, Osaka, 558-8585 Japan
- Email: komori@sci.osaka-cu.ac.jp
**Toshiyuki Sugawa**- Affiliation: Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
- MR Author ID: 318760
- Email: sugawa@math.sci.hiroshima-u.ac.jp
- Received by editor(s): November 6, 2003
- Received by editor(s) in revised form: March 16, 2004
- Published electronically: June 8, 2004
- Additional Notes: The second author was partially supported by the Ministry of Education, Grant-in-Aid for Encouragement of Young Scientists, 9740056. A portion of the present research was carried out during the second author’s visit to the University of Helsinki under the exchange program of scientists between the Academy of Finland and the JSPS
- © Copyright 2004 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**8**(2004), 115-142 - MSC (2000): Primary 30F60; Secondary 30F40, 34A20
- DOI: https://doi.org/10.1090/S1088-4173-04-00108-0
- MathSciNet review: 2060380