Convergence in discrete Cauchy problems and applications to circle patterns
HTML articles powered by AMS MathViewer
- by D. Matthes PDF
- Conform. Geom. Dyn. 9 (2005), 1-23 Request permission
Abstract:
A lattice-discretization of analytic Cauchy problems in two dimensions is presented. It is proven that the discrete solutions converge to a smooth solution of the original problem as the mesh size $\varepsilon$ tends to zero. The convergence is in $C^\infty$ and the approximation error for arbitrary derivatives is quadratic in $\varepsilon$. In application, $C^\infty$-approximation of conformal maps by Schramm’s orthogonal circle patterns and lattices of cross-ratio minus one is shown.References
- A. I. Bobenko, D. Matthes, and Yu. B. Suris, Discrete and smooth orthogonal systems: $C^\infty$-approximation, Int. Math. Res. Not. 45 (2003), 2415–2459. MR 2006481, DOI 10.1155/S1073792803130991
- Alexander Bobenko and Ulrich Pinkall, Discrete isothermic surfaces, J. Reine Angew. Math. 475 (1996), 187–208. MR 1396732, DOI 10.1515/crll.1996.475.187
- Alexander I. Bobenko and Ulrich Pinkall, Discretization of surfaces and integrable systems, Discrete integrable geometry and physics (Vienna, 1996) Oxford Lecture Ser. Math. Appl., vol. 16, Oxford Univ. Press, New York, 1999, pp. 3–58. MR 1676682
- Peter Doyle, Zheng-Xu He, and Burt Rodin, Second derivatives of circle packings and conformal mappings, Discrete Comput. Geom. 11 (1994), no. 1, 35–49. MR 1244888, DOI 10.1007/BF02573993
- Zheng-Xu He and Oded Schramm, The $C^\infty$-convergence of hexagonal disk packings to the Riemann map, Acta Math. 180 (1998), no. 2, 219–245. MR 1638772, DOI 10.1007/BF02392900
- Mitio Nagumo, Über das Anfangswertproblem partieller Differentialgleichungen, Jpn. J. Math. 18 (1942), 41–47 (German). MR 15186, DOI 10.4099/jjm1924.18.0_{4}1
- L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 (1972), 561–576. MR 322321, DOI 10.4310/jdg/1214430643
- F. W. Nijhoff, G. R. W. Quispel, and H. W. Capel, Direct linearization of nonlinear difference-difference equations, Phys. Lett. A 97 (1983), no. 4, 125–128. MR 719638, DOI 10.1016/0375-9601(83)90192-5
- Burt Rodin and Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), no. 2, 349–360. MR 906396
- Oded Schramm, Circle patterns with the combinatorics of the square grid, Duke Math. J. 86 (1997), no. 2, 347–389. MR 1430437, DOI 10.1215/S0012-7094-97-08611-7
- Wolfgang Walter, An elementary proof of the Cauchy-Kowalevsky theorem, Amer. Math. Monthly 92 (1985), no. 2, 115–126. MR 777557, DOI 10.2307/2322639
Additional Information
- D. Matthes
- Affiliation: Institut für Mathematik, Technische Universität Berlin, Straße des 17.Juni 136, 10623 Berlin, Germany
- Address at time of publication: Institut für Mathematik, Johannes Gutenberg Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
- MR Author ID: 722279
- Email: matthes@mathematik.uni-mainz.de
- Received by editor(s): March 19, 2004
- Received by editor(s) in revised form: November 16, 2004
- Published electronically: February 9, 2005
- Additional Notes: Supported by the SFB 288 “Differential Geometry and Quantum Physics” of the Deutsche Forschungsgemeinschaft
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 9 (2005), 1-23
- MSC (2000): Primary 30G25; Secondary 35A10, 52C15
- DOI: https://doi.org/10.1090/S1088-4173-05-00118-9
- MathSciNet review: 2133803