Hilbert spaces of martingales supporting certain substitution-dynamical systems
HTML articles powered by AMS MathViewer
- by Dorin Ervin Dutkay and Palle E. T. Jorgensen
- Conform. Geom. Dyn. 9 (2005), 24-45
- DOI: https://doi.org/10.1090/S1088-4173-05-00135-9
- Published electronically: March 24, 2005
- PDF | Request permission
Abstract:
Let $X$ be a compact Hausdorff space. We study finite-to-one mappings $r\colon X\rightarrow X$, onto $X$, and measures on the corresponding projective limit space $X_\infty (r)$. We show that certain quasi-invariant measures on $X_\infty (r)$ correspond in a one-to-one fashion to measures on $X$ which satisfy two identities. Moreover, we identify those special measures on $X_\infty (r)$ which are associated via our correspondence with a function $V$ on $X$, a Ruelle transfer operator $R_V$, and an equilibrium measure $\mu _V$ on $X$.References
- Luigi Accardi, Alberto Frigerio, and John T. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 97–133. MR 660823, DOI 10.2977/prims/1195184017
- Akram Aldroubi, David Larson, Wai-Shing Tang, and Eric Weber, Geometric aspects of frame representations of abelian groups, Trans. Amer. Math. Soc. 356 (2004), no. 12, 4767–4786. MR 2084397, DOI 10.1090/S0002-9947-04-03679-7
- Jonathan Ashley, Brian Marcus, and Selim Tuncel, The classification of one-sided Markov chains, Ergodic Theory Dynam. Systems 17 (1997), no. 2, 269–295. MR 1444053, DOI 10.1017/S0143385797069745
- Akram Aldroubi, Qiyu Sun, and Wai-Shing Tang, Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces, Constr. Approx. 20 (2004), no. 2, 173–189. MR 2036639, DOI 10.1007/s00365-003-0539-0
- Larry Baggett, Alan Carey, William Moran, and Peter Ohring, General existence theorems for orthonormal wavelets, an abstract approach, Publ. Res. Inst. Math. Sci. 31 (1995), no. 1, 95–111. MR 1317525, DOI 10.2977/prims/1195164793
- L. W. Baggett, P. E. T. Jorgensen, K. D. Merrill, and J. A. Packer, An analogue of Bratteli-Jorgensen loop group actions for GMRA’s, Wavelets, frames and operator theory, Contemp. Math., vol. 345, Amer. Math. Soc., Providence, RI, 2004, pp. 11–25. MR 2066819, DOI 10.1090/conm/345/06238
- Lawrence W. Baggett and Kathy D. Merrill, Abstract harmonic analysis and wavelets in $\mathbf R^n$, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 17–27. MR 1735967, DOI 10.1090/conm/247/03795
- Viviane Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1793194, DOI 10.1142/9789812813633
- Luis Barreira and Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory, University Lecture Series, vol. 23, American Mathematical Society, Providence, RI, 2002. MR 1862379, DOI 10.1090/ulect/023
- Berndt Brenken and Palle E. T. Jorgensen, A family of dilation crossed product algebras, J. Operator Theory 25 (1991), no. 2, 299–308. MR 1203035
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI 10.1007/BF02591353
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Valentin Deaconu and Paul S. Muhly, $C^*$-algebras associated with branched coverings, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1077–1086. MR 1814145, DOI 10.1090/S0002-9939-00-05697-5
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Dorin E. Dutkay, The wavelet Galerkin operator, J. Operator Theory 51 (2004), no. 1, 49–70. MR 2055804 DutJo D.E. Dutkay, P.E.T. Jorgensen, Wavelets on fractals, to appear in Rev. Mat. Iberoamericana. DuJo04 D.E. Dutkay, P.E.T. Jorgensen, Martingales, endomorphisms, and covariant systems of operators in Hilbert space, preprint 2004, arxiv math.CA/0407330. GKL05 R. Gohm, B. Kummerer, T. Lang, Non-commutative symbolic coding, Preprint 2005, Greifswald University.
- Richard F. Gundy, Two remarks concerning wavelets: Cohen’s criterion for low-pass filters and Meyer’s theorem on linear independence, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 249–258. MR 1738093, DOI 10.1090/conm/247/03805
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Palle E. T. Jorgensen, Ruelle operators: functions which are harmonic with respect to a transfer operator, Mem. Amer. Math. Soc. 152 (2001), no. 720, viii+60. MR 1837681, DOI 10.1090/memo/0720 Jor04 P.E.T. Jorgensen, Analysis and Probability, preprint 2004.
- P. E. T. Jorgensen and D. W. Kribs, Wavelet representations and Fock space on positive matrices, J. Funct. Anal. 197 (2003), no. 2, 526–559. MR 1960424, DOI 10.1016/S0022-1236(02)00026-5
- Palle T. Jørgensen and Paul S. Muhly, Selfadjoint extensions satisfying the Weyl operator commutation relations, J. Analyse Math. 37 (1980), 46–99. MR 583632, DOI 10.1007/BF02797680
- Elias Katsoulis and David W. Kribs, Isomorphisms of algebras associated with directed graphs, Math. Ann. 330 (2004), no. 4, 709–728. MR 2102309, DOI 10.1007/s00208-004-0566-6
- David W. Kribs, On bilateral weighted shifts in noncommutative multivariable operator theory, Indiana Univ. Math. J. 52 (2003), no. 6, 1595–1614. MR 2021049, DOI 10.1512/iumj.2003.52.2375
- A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1977 (German). Reprint of the 1933 original. MR 0494348
- Burkhard Kümmerer, Markov dilations on $W^\ast$-algebras, J. Funct. Anal. 63 (1985), no. 2, 139–177. MR 803091, DOI 10.1016/0022-1236(85)90084-9
- Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, DOI 10.1090/S0002-9947-1989-1008470-5
- Paul S. Muhly and Baruch Solel, Quantum Markov processes (correspondences and dilations), Internat. J. Math. 13 (2002), no. 8, 863–906. MR 1928802, DOI 10.1142/S0129167X02001514
- J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed. MR 0402915
- R. D. Nussbaum and S. M. Verduyn Lunel, Generalizations of the Perron-Frobenius theorem for nonlinear maps, Mem. Amer. Math. Soc. 138 (1999), no. 659, viii+98. MR 1470912, DOI 10.1090/memo/0659
- Gelu Popescu, Commutant lifting, tensor algebras, and functional calculus, Proc. Edinb. Math. Soc. (2) 44 (2001), no. 2, 389–406. MR 1880399, DOI 10.1017/S0013091598001059
- Gelu Popescu, Central intertwining lifting, suboptimization, and interpolation in several variables, J. Funct. Anal. 189 (2002), no. 1, 132–154. MR 1887631, DOI 10.1006/jfan.2001.3861
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- David Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125 (1989), no. 2, 239–262. MR 1016871, DOI 10.1007/BF01217908
- David Ruelle, Application of hyperbolic dynamics to physics: some problems and conjectures, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 3, 275–278. MR 2058287, DOI 10.1090/S0273-0979-04-01023-7
- Meiyu Su, The information topology and true laminations for diffeomorphisms, Conform. Geom. Dyn. 8 (2004), 36–51. MR 2060377, DOI 10.1090/S1088-4173-04-00107-9
- Domokos Szász and Tamás Varjú, Local limit theorem for the Lorentz process and its recurrence in the plane, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 257–278. MR 2041271, DOI 10.1017/S0143385703000439
Bibliographic Information
- Dorin Ervin Dutkay
- Affiliation: Department of Mathematics Hill Center-Busch Campus, Rutgers University, Piscataway, New Jersey 08845-8019
- MR Author ID: 608228
- Email: ddutkay@math.rutgers.edu
- Palle E. T. Jorgensen
- Affiliation: Department of Mathematics The University of Iowa, 14 MacLean Hall, Iowa City, Iowa 52242-1419
- MR Author ID: 95800
- ORCID: 0000-0003-2681-5753
- Email: jorgen@math.uiowa.edu
- Received by editor(s): January 23, 2005
- Received by editor(s) in revised form: February 2, 2005
- Published electronically: March 24, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 9 (2005), 24-45
- MSC (2000): Primary 42C40, 42A16, 42A65, 43A65, 46G15, 47D07, 60G18
- DOI: https://doi.org/10.1090/S1088-4173-05-00135-9
- MathSciNet review: 2133804
Dedicated: Dedicated to the memory of Shizuo Kakutani