## Hilbert spaces of martingales supporting certain substitution-dynamical systems

HTML articles powered by AMS MathViewer

- by Dorin Ervin Dutkay and Palle E. T. Jorgensen PDF
- Conform. Geom. Dyn.
**9**(2005), 24-45 Request permission

## Abstract:

Let $X$ be a compact Hausdorff space. We study finite-to-one mappings $r\colon X\rightarrow X$, onto $X$, and measures on the corresponding projective limit space $X_\infty (r)$. We show that certain quasi-invariant measures on $X_\infty (r)$ correspond in a one-to-one fashion to measures on $X$ which satisfy two identities. Moreover, we identify those special measures on $X_\infty (r)$ which are associated via our correspondence with a function $V$ on $X$, a Ruelle transfer operator $R_V$, and an equilibrium measure $\mu _V$ on $X$.## References

- Luigi Accardi, Alberto Frigerio, and John T. Lewis,
*Quantum stochastic processes*, Publ. Res. Inst. Math. Sci.**18**(1982), no. 1, 97–133. MR**660823**, DOI 10.2977/prims/1195184017 - Akram Aldroubi, David Larson, Wai-Shing Tang, and Eric Weber,
*Geometric aspects of frame representations of abelian groups*, Trans. Amer. Math. Soc.**356**(2004), no. 12, 4767–4786. MR**2084397**, DOI 10.1090/S0002-9947-04-03679-7 - Jonathan Ashley, Brian Marcus, and Selim Tuncel,
*The classification of one-sided Markov chains*, Ergodic Theory Dynam. Systems**17**(1997), no. 2, 269–295. MR**1444053**, DOI 10.1017/S0143385797069745 - Akram Aldroubi, Qiyu Sun, and Wai-Shing Tang,
*Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces*, Constr. Approx.**20**(2004), no. 2, 173–189. MR**2036639**, DOI 10.1007/s00365-003-0539-0 - Larry Baggett, Alan Carey, William Moran, and Peter Ohring,
*General existence theorems for orthonormal wavelets, an abstract approach*, Publ. Res. Inst. Math. Sci.**31**(1995), no. 1, 95–111. MR**1317525**, DOI 10.2977/prims/1195164793 - L. W. Baggett, P. E. T. Jorgensen, K. D. Merrill, and J. A. Packer,
*An analogue of Bratteli-Jorgensen loop group actions for GMRA’s*, Wavelets, frames and operator theory, Contemp. Math., vol. 345, Amer. Math. Soc., Providence, RI, 2004, pp. 11–25. MR**2066819**, DOI 10.1090/conm/345/06238 - Lawrence W. Baggett and Kathy D. Merrill,
*Abstract harmonic analysis and wavelets in $\mathbf R^n$*, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 17–27. MR**1735967**, DOI 10.1090/conm/247/03795 - Viviane Baladi,
*Positive transfer operators and decay of correlations*, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR**1793194**, DOI 10.1142/9789812813633 - Luis Barreira and Yakov B. Pesin,
*Lyapunov exponents and smooth ergodic theory*, University Lecture Series, vol. 23, American Mathematical Society, Providence, RI, 2002. MR**1862379**, DOI 10.1090/ulect/023 - Berndt Brenken and Palle E. T. Jorgensen,
*A family of dilation crossed product algebras*, J. Operator Theory**25**(1991), no. 2, 299–308. MR**1203035** - Hans Brolin,
*Invariant sets under iteration of rational functions*, Ark. Mat.**6**(1965), 103–144 (1965). MR**194595**, DOI 10.1007/BF02591353 - Ingrid Daubechies,
*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107**, DOI 10.1137/1.9781611970104 - Valentin Deaconu and Paul S. Muhly,
*$C^*$-algebras associated with branched coverings*, Proc. Amer. Math. Soc.**129**(2001), no. 4, 1077–1086. MR**1814145**, DOI 10.1090/S0002-9939-00-05697-5 - J. L. Doob,
*Classical potential theory and its probabilistic counterpart*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR**731258**, DOI 10.1007/978-1-4612-5208-5 - Dorin E. Dutkay,
*The wavelet Galerkin operator*, J. Operator Theory**51**(2004), no. 1, 49–70. MR**2055804**
DutJo D.E. Dutkay, P.E.T. Jorgensen, Wavelets on fractals, to appear in - Richard F. Gundy,
*Two remarks concerning wavelets: Cohen’s criterion for low-pass filters and Meyer’s theorem on linear independence*, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 249–258. MR**1738093**, DOI 10.1090/conm/247/03805 - John E. Hutchinson,
*Fractals and self-similarity*, Indiana Univ. Math. J.**30**(1981), no. 5, 713–747. MR**625600**, DOI 10.1512/iumj.1981.30.30055 - Palle E. T. Jorgensen,
*Ruelle operators: functions which are harmonic with respect to a transfer operator*, Mem. Amer. Math. Soc.**152**(2001), no. 720, viii+60. MR**1837681**, DOI 10.1090/memo/0720
Jor04 P.E.T. Jorgensen, - P. E. T. Jorgensen and D. W. Kribs,
*Wavelet representations and Fock space on positive matrices*, J. Funct. Anal.**197**(2003), no. 2, 526–559. MR**1960424**, DOI 10.1016/S0022-1236(02)00026-5 - Palle T. Jørgensen and Paul S. Muhly,
*Selfadjoint extensions satisfying the Weyl operator commutation relations*, J. Analyse Math.**37**(1980), 46–99. MR**583632**, DOI 10.1007/BF02797680 - Elias Katsoulis and David W. Kribs,
*Isomorphisms of algebras associated with directed graphs*, Math. Ann.**330**(2004), no. 4, 709–728. MR**2102309**, DOI 10.1007/s00208-004-0566-6 - David W. Kribs,
*On bilateral weighted shifts in noncommutative multivariable operator theory*, Indiana Univ. Math. J.**52**(2003), no. 6, 1595–1614. MR**2021049**, DOI 10.1512/iumj.2003.52.2375 - A. Kolmogoroff,
*Grundbegriffe der Wahrscheinlichkeitsrechnung*, Springer-Verlag, Berlin-New York, 1977 (German). Reprint of the 1933 original. MR**0494348** - Burkhard Kümmerer,
*Markov dilations on $W^\ast$-algebras*, J. Funct. Anal.**63**(1985), no. 2, 139–177. MR**803091**, DOI 10.1016/0022-1236(85)90084-9 - Stephane G. Mallat,
*Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$*, Trans. Amer. Math. Soc.**315**(1989), no. 1, 69–87. MR**1008470**, DOI 10.1090/S0002-9947-1989-1008470-5 - Paul S. Muhly and Baruch Solel,
*Quantum Markov processes (correspondences and dilations)*, Internat. J. Math.**13**(2002), no. 8, 863–906. MR**1928802**, DOI 10.1142/S0129167X02001514 - J. Neveu,
*Discrete-parameter martingales*, Revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed. MR**0402915** - R. D. Nussbaum and S. M. Verduyn Lunel,
*Generalizations of the Perron-Frobenius theorem for nonlinear maps*, Mem. Amer. Math. Soc.**138**(1999), no. 659, viii+98. MR**1470912**, DOI 10.1090/memo/0659 - Gelu Popescu,
*Commutant lifting, tensor algebras, and functional calculus*, Proc. Edinb. Math. Soc. (2)**44**(2001), no. 2, 389–406. MR**1880399**, DOI 10.1017/S0013091598001059 - Gelu Popescu,
*Central intertwining lifting, suboptimization, and interpolation in several variables*, J. Funct. Anal.**189**(2002), no. 1, 132–154. MR**1887631**, DOI 10.1006/jfan.2001.3861 - Walter Rudin,
*Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR**924157** - Walter Rudin,
*Functional analysis*, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR**1157815** - David Ruelle,
*The thermodynamic formalism for expanding maps*, Comm. Math. Phys.**125**(1989), no. 2, 239–262. MR**1016871**, DOI 10.1007/BF01217908 - David Ruelle,
*Application of hyperbolic dynamics to physics: some problems and conjectures*, Bull. Amer. Math. Soc. (N.S.)**41**(2004), no. 3, 275–278. MR**2058287**, DOI 10.1090/S0273-0979-04-01023-7 - Meiyu Su,
*The information topology and true laminations for diffeomorphisms*, Conform. Geom. Dyn.**8**(2004), 36–51. MR**2060377**, DOI 10.1090/S1088-4173-04-00107-9 - Domokos Szász and Tamás Varjú,
*Local limit theorem for the Lorentz process and its recurrence in the plane*, Ergodic Theory Dynam. Systems**24**(2004), no. 1, 257–278. MR**2041271**, DOI 10.1017/S0143385703000439

*Rev. Mat. Iberoamericana*. DuJo04 D.E. Dutkay, P.E.T. Jorgensen,

*Martingales, endomorphisms, and covariant systems of operators in Hilbert space*, preprint 2004, arxiv math.CA/0407330. GKL05 R. Gohm, B. Kummerer, T. Lang,

*Non-commutative symbolic coding*, Preprint 2005, Greifswald University.

*Analysis and Probability*, preprint 2004.

## Additional Information

**Dorin Ervin Dutkay**- Affiliation: Department of Mathematics Hill Center-Busch Campus, Rutgers University, Piscataway, New Jersey 08845-8019
- MR Author ID: 608228
- Email: ddutkay@math.rutgers.edu
**Palle E. T. Jorgensen**- Affiliation: Department of Mathematics The University of Iowa, 14 MacLean Hall, Iowa City, Iowa 52242-1419
- MR Author ID: 95800
- ORCID: 0000-0003-2681-5753
- Email: jorgen@math.uiowa.edu
- Received by editor(s): January 23, 2005
- Received by editor(s) in revised form: February 2, 2005
- Published electronically: March 24, 2005
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn.
**9**(2005), 24-45 - MSC (2000): Primary 42C40, 42A16, 42A65, 43A65, 46G15, 47D07, 60G18
- DOI: https://doi.org/10.1090/S1088-4173-05-00135-9
- MathSciNet review: 2133804

Dedicated: Dedicated to the memory of Shizuo Kakutani