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TRACE COORDINATES OF TEICHMÜLLER SPACE
OF RIEMANN SURFACES OF SIGNATURE (0, 4)

THOMAS GAUGLHOFER AND KLAUS-DIETER SEMMLER

Abstract. We explicitly give T , the Teichmüller space of four-holed spheres
(which we call X pieces) in trace coordinates, as well as its modular group and
a fundamental domain for the action of this group on T which is its moduli
space. As a consequence, we see that on any hyperbolic Riemann surface, two
closed geodesics of lengths smaller than 2 arccosh(2) intersect at most once;
two closed geodesics of lengths smaller than 2 arccosh(3) are both non-dividing
or intersect at most once.

1. Introduction

This paper deals with Teichmüller space and the Riemann moduli problem for
surfaces of signature (0, 4) which we call X pieces. The Riemann moduli problem
is to describe the space of isomorphism classes of Riemann surfaces of a given
signature which is known as the moduli space. Teichmüller space can be defined in
many different ways, for instance as the space of isotopy classes of marked complex
structures of the Riemann surface, where two structures define the same point in
Teichmüller space if there exists a holomorphic homeomorphism homotopic to the
identity leading from one to the other. Once Teichmüller space is well known, we
can construct the modular group or mapping class group and build the quotient of
Teichmüller space with it to get the moduli space.

In this paper we take the view that a Riemann surface is given by a Fuchsian
group, namely a discrete subgroup of SL(2,R) acting on the upper half plane H

by Möbius transformations and by which we quotient H to obtain the structure,
which is determined by this subgroup up to conjugation. We choose SL(2,R) rather
than PSL(2,R), as is usually done in literature, because this gives us additional
information on direction of geodesics (see section 2). However, as we choose the
traces of the generating elements to be positive, these two approaches are equivalent
(see [SS92]). In this language we can define Teichmüller space as the space of
endomorphisms of the Fuchsian subgroup into SL(2,R) up to conjugation that
preserve parabolic elements and whose image is discrete.

As the referee pointed out, this approach is quite the same as the one taken in
[Kee77] (based upon previous work; see [Kee65, Kee66, Kee71, Kee73]) where Keen
gives rough fundamental domains for the action of modular groups on Teichmüller
spaces for various signatures including (0, 4). However, our way to show that there
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are no two points in our fundamental domain that correspond to isometric surfaces
(based upon shortest dividing geodesics; see sections 5 and 6) is quite different from
the techniques developed by Keen.

Another approach would have been to consider the characters of representation
of the fundamental group of a four-holed sphere into SL(2,R) as this is done in
[BG99], based upon [Mag80], where Magnus treats rings of Fricke characters of
representations of free groups on n free generators into SL(2,C) and their auto-
morphisms. However, this approach has two disadvantages: Firstly, the modular
group (group of automorphisms) of the ring of Fricke characters is not the modular
group acting on Teichmüller space of surfaces of signature (0, n+ 1) because n free
generators do not necessarily generate such a surface. Indeed, the fundamental
group of surfaces of signature (0, n+ 1) is a free group on n generators, isomorphic
to the one of surfaces of signature (1, n− 1), yet these surfaces aren’t homeomor-
phic. Secondly, the approach wouldn’t explicitly give the subgroup of SL(2,R)
isomorphic to the fundamental group of the surface nor its action on the upper half
plane and we couldn’t explicitly give fundamental domains for four-holed spheres.

Yet a different point of view is taken in [Luo98] where Feng Luo gives a set of con-
ditions for a function f over the isotopy classes of essential unoriented simple closed
curves on an orientable surface to be the geodesic length function of a hyperbolic
metric on the surface. As these conditions are polynomial equations in cosh(f/2),
the parameterization of Teichmüller space is in the case of an X piece the same as
the one we obtained (up to a factor of 2 because we choose half-traces), but uses
heavy machinery such as the Maskit combination theorem (cf. [Mas65, Mas88]) and
doesn’t give the explicit parameterization of the fundamental group of X pieces as
a subgroup of SL(2,R) which is essential in order to give the modular group and
solve the Riemann moduli problem in the second part of this paper.

The main results of this paper are the explicit parameterization of the funda-
mental group of X pieces as a subgroup of SL(2,R) and of Teichmüller space T as
a subset of a hypersurface in R

7 in terms of traces (actually half of the traces of the
matrices), the fact that the modular group in these trace coordinates is polynomial,
and the explicit description of moduli space:

Theorem A. The subgroup of SL(2,R) acting on the upper half plane H by Möbius
transformations such that the quotient surface has signature (0, 4), is freely gener-
ated by α, β and δ or a simultaneous conjugation of these three:

α :=


 a− ac+ b√

c2 − 1
− 1
c2 − 1

h(a, b, c) a+
ac+ b√
c2 − 1


 ,

β :=


 b− bc+ a√

c2 − 1
−c+

√
c2 − 1

c2 − 1

h(a, b, c)(c−
√
c2 − 1) b+

bc+ a√
c2 − 1


 ,

δ :=




d+
cd+ e√
c2 − 1

−p(c+
√
c2 − 1)

c2 − 1
h(c, d, e)(c−

√
c2 − 1)

p
d− cd+ e√

c2 − 1


 ,
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with

p := −ae+ bd+ (ad+ be)(c−
√
c2 − 1) +

√
c2 − 1((c−

√
c2 − 1)z − x)

h(a, b, c)
,

h(u, v, w) := u2 + v2 + w2 + 2uvw − 1.

Where (a, b, c, d, e, x, z) is an element of Teichmüller space T of surfaces of sig-
nature (0, 4) in trace coordinates, i.e.

T := {(a, b, c, d, e, x, z) ∈ P |Q = 0}
with the parameter space

P :=
{
(a, b, c, d, e, x, z) ∈ R

7
∣∣∣a, b, c, d, e, x, z > 1

}
and the polynomial

Q := a2 + b2 + c2 + d2 + e2 + x2 + z2 + 4abde− 1
+2c(ab+ de) + 2x(ad+ be) + 2z(ae+ bd) − 2cxz = 0.

Remark. The polynomial Q and its null-set have already been studied in [BG99];
however, the authors didn’t give Teichmüller space for four-holed spheres in that
paper. Nevertheless, the result regarding the parameterization of T is already
given in [Luo98] where Feng Luo discusses more general results (previous related
results can be found also in [SS89, SS88, SS86]) and thus not new. However, our
method of computation is less complicated and allows us to give the explicit matrices
generating the fundamental group.

Theorem B. The modular group of Teichmüller space T of surfaces of signature
(0, 4) acts polynomially on T in these trace coordinates.

Theorem C. The set of isometry classes of surfaces of signature (0, 4) is in a
1-1-correspondence with the set

F :=
{

(a, b, c, d, e, x, z) ∈ R7
∣∣∣ 1 < a ≤ min{b, d, e},

1 < c ≤ z ≤ x ≤ cz − ad− be

and Q = 0
}
.

The algebraic formalism using quaternions introduced in section 2 leads to the
building blocks (pairs of pants or Y pieces; section 3) of the X piece and allows us
to determine explicitly a fundamental domain for the X piece and its fundamental
group as a subgroup of SL(2,R) (section 4). We then parameterize Teichmüller
space T of these four-holed spheres in terms of traces. In section 5, we show that
the modular group in trace coordinates is polynomial and in section 6 we treat
the moduli problem by explicitly giving the moduli space, seen as a fundamental
domain for the modular group of T . Finally, in the last two sections, we give some
motivation for the approach that uses trace coordinates: We show that in classical
Fenchel-Nielsen coordinates, the modular group gets extremely complicated, and
give a general result about geodesic lengths on Riemann surfaces.

2. Preliminaries

In this section we recall an algebraic formalism studied in [Sem88] to treat geo-
metric objects as well as isometries of the upper half plane H.



TRACE COORDINATES OF TEICHMÜLLER SPACE FOR SIGNATURE (0, 4) 49

We consider Möbius transformations leaving the upper half plane invariant, and
parameterize them by elements of SL(2,R) ⊂M(2,R), a vector space over R which
we give the basis of quaternions {1, I,J,K}:

1 =
(

1 0
0 1

)
, I =

(
1 0
0 −1

)
, J =

(
0 1
1 0

)
, K =

(
0 1

−1 0

)
.

Notation. We call H0 the vector subspace generated by I,J and K. We call trace
of an element α of SL(2,R) its 1-component and note it tr(α) (it is actually half of
the standard trace of the matrix α). If an element of SL(2,R) is written as (a+A)
we mean the element a1 +A, with a ∈ R and A ∈ H0.

2.1. The products.

Definition 1. The “scalar” product over H0 is the symmetric bilinear form

(. , .) : H0 ×H0 → R defined by (A,B) = a1b1 + a2b2 − a3b3

where A and B are the matrices without traces: A = a1I + a2J + a3K and
B = b1I + b2J + b3K.

Definition 2. The ∧-product is the unique antisymmetric bilinear form
∧ : H0 × H0 → H0 satisfying I ∧ J = K, I ∧ K = J and J ∧ K = −I, i.e.
A ∧B = (a3b2 − a2b3)I + (a1b3 − a3b1)J + (a1b2 − a2b1)K.

Remark. The usual matrix product of two elements (a+A) and (b+B) of SL(2,R)
can be written as

(a+A) ∗ (b+B) = ab+ (A,B) + aB + bA+A ∧B.

2.2. The geometric elements of SL(2,R). At first sight, the products in 2.1
operate on matrices only and have no geometric meaning. Using Möbius transfor-
mations we can give them a geometric sense:

Definition 3. Let α = (a+A) ∈ SL(2,R), A = a1I+a2J+a3K andmα the Möbius
transformation z �→ (a+a1)z+(a2+a3)

(a2−a3)z+(a−a1)
. We define the geometric object corresponding

to (a+A):
– if (A,A) > 0, the geodesic passing through the fixed points of mα;
– if (A,A) = 0, the (infinite) fixed point of mα;
– if (A,A) < 0, the fixed point of mα that has a positive imaginary part.

Remark. A half-circle centred on the real axis is indeed a geodesic of the upper
half plane endowed with the distance d, defined by cosh(d(A,B)) = |(A,B)|√

(A,A)(B,B)

for (a+A), (b +B) ∈ SL(2,R) such that (A,A) < 0 and (B,B) < 0 ([Sem88]).

Definition 4. If (a+A) ∈ SL(2,R) is of positive trace and (A,A) > 0, we give its
corresponding geodesic the following direction:

– if a2 − a3 > 0, the geodesic is directed towards the right,
– if a2 − a3 < 0, towards the left,
– if a2 − a3 = 0 and |a+ a1| > 1, upwards,
– if a2 − a3 = 0 and |a+ a1| < 1, downwards.

If (a+A) ∈ SL(2,R) is of negative trace and (A,A) > 0, we give its corresponding
geodesic the direction of the geodesic (−a−A) defined as before.
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Remark. Note that the orientation of a geodesic corresponding to (a+A)∈SL(2,R),
a < 0 is well defined because (a+A) and (−a−A) correspond to the same Möbius
transformation.

This definition gives a geodesic that is directed from the repulsive towards the
attractive fixed point of mα if tr(α) > 0.

Note also that (a+A) and (a+A)−1 = (a−A) correspond to the same geodesic
but have opposite orientation.

2.3. Isometries of H. Up to now we treated the correspondence between matrices
(∈ SL(2,R)) and geometric objects of the upper half plane H. But we know that
there is a homomorphism of groups from SL(2,R) to Möbius transformations. We
can therefore consider the action of a geodesic, represented by a matrix, on the
upper half plane.

Definition 5. For each matrix α = (a + A) ∈ SL(2,R) we define the homomor-
phism,

hα : SL(2,R) → SL(2,R) : β �→ α ∗ β ∗ α−1.

Proposition 6. The restriction of hα to {(b + B) ∈ SL(2,R)|0 < b < 1} is also
an homomorphism (0 < tr(hα(β)) < 1) and even an isometry of H.

Proof. We have tr(hα(b+B)) = b by direct calculation using (a+A)−1 = (a−A).
Thus hα(b+B) = b+ α ∗B ∗ α−1. As (B,C) = tr(B ∗ C) we have also

(B,C) = tr(B ∗ C) = tr(hα(B ∗ C))
= tr(α ∗B ∗ C ∗ α−1) = tr(α ∗B ∗ α−1 ∗ α ∗ C ∗ α−1)
= (α ∗B ∗ α−1, α ∗ C ∗ α−1) = (hα(B), hα(C)).

Therefore hα leaves the “scalar” product invariant and thus is an isometry. �

Remark. This isometry hα, acting on matrices, is actually the same transformation
as the Möbius transformation mα acting on the points of the upper half plane; in
the sense that if γ = (c + C) corresponds to the point z in H, then the matrix
hα(γ) corresponds to the point mα(z) and hα ◦ hβ(γ) = hα∗β(γ) corresponds to
mα(mβ(x)).

3. The Y piece

A lot of research has been done on the Riemann surface of signature (0, 3) also
called pair of pants, three-holed sphere or Y piece (e.g. [Bea83, Bin00, Bus92,
Mas88, SS92]). Here we will only give two results that concern geodesics on a Y
piece.

Lemma 7. Let α = (a + A) and β = (b + B) ∈ SL(2,R) with a > 1 and b > 1
satisfying HY , i.e. be such that there is γ = (c + C) ∈ SL(2,R) with c > 1 and
α ∗ β ∗ γ = −1.

Then the geodesics corresponding to α, β and γ = −(α ∗ β)−1 form a domain
whose borders are three geodesics that don’t intersect, i.e. they are disjoint and no
one of them separates H into two regions that contain each one of the others.

Proof. See for instance [Bin00]. �
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Proposition 8. If α and β satisfy HY , then there exist only two situations for
the hyperbolic triangle formed by α, β and γ = −(α ∗ β)−1 in the unit disc model 1

of H:
(A) The triangle is positively oriented and the names of the axes are as follows:

c+C

b+B

a+A

(B) The triangle is negatively oriented and the names of the axes are as follows:

b+B

c+C

a+A

Proof. By the previous lemma we know that the axes form a triangle.
Let two of the “edges” (axes) be positively oriented. We can suppose that their

names are (a + A) and (b + B) by cyclic permutation of the names. We can also
suppose that (in the upper half-plane model) they are both directed towards the
right and that (a+A) is on the left of (b+B) ( a1

a2−a3
< b1

b2−b3
) by conjugation2. But

in this case we have c2−c3
(a2−a3)(b2−b3)

= a
a2−a3

− a1
a2−a3

+ b
b2−b3

+ b1
b2−b3

> a
a2−a3

+ b
b2−b3

> 0 and (c + C) is also directed towards the right. But this means that we are in
situation (A) because in all other cases we can construct (by cyclic permutation of
the names and conjugation) a case where (c+ C) is directed towards the left.

Analogously, we are in situation (B) if two of the “edges” are negatively oriented.
�

1If we choose an arbitrary point p of the unit circle, then there exists a natural isometry
between D2\{p} and H such that S\{p} is mapped to R.

2choice of p
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Proposition 9. The domain whose boundaries s1, . . . , s4 are each perpendicular to
two of α, β, γ = −(α ∗β)−1 and β−1 ∗α ∗β (see figure 1) is a fundamental domain
for the Y piece.

γ

β−1
∗α∗β

αβ
s1 s2 s3

s4

Figure 1. A fundamental domain of a Y piece

Proof. Using the side pairing transformations gs1 = hβ, gs2 = h−1
β , gs3 = hγ and

gs4 = h−1
γ we verify the conditions of Poincaré’s polyhedron theorem (as presented

in [Mas88]). Thus H/〈hβ, hγ〉 = H/〈hα, hβ〉 is a surface and its signature is (0, 3)
as can easily be seen from the fundamental domain. �

Remark. Note that a Y piece is not a compact surface and that the graphics of
the Y and X pieces in this paper visualize only the Nielsen kernels (half-cylinders
dropped).

4. The X piece

In this section, we will study another surface which we will call the X piece. It’s
a Riemann surface of signature (0,4) obtained by joining two Y pieces generated
by hα, hβ and hδ, hε along γ = −(α ∗ β)−1 = −δ ∗ ε (dropping two half-cylinders).

Using again Poincaré’s polyhedron theorem, it is easy to prove that the funda-
mental domain of the X piece can be obtained by joining the domains of the two
Y pieces along γ as in figure 2.

4.1. The coordinates in the quaternion basis. Obviously, if we take the hy-
perbolic elements α, β, δ, ε such that α ∗ β ∗ δ ∗ ε = 1, we cannot be sure that the
axes of α and ε are situated on two different sides of γ, i.e. we cannot be sure that
γ is a dividing geodesic. In order to ensure this, we conjugate all the elements
such that γ = (c+

√
c2 − 1 I), and the condition for γ being a dividing geodesic is

now equivalent to the condition that the attracting fixed points of α and ε are of
different signs (they are real numbers!); which leads us to proposition 10.

Proposition 10. Let α, β, γ, δ and ε be hyperbolic elements such that hα, hβ and
hδ, hε generate Y pieces and γ = −(α ∗ β)−1 = −δ ∗ ε = (c +

√
c2 − 1 I). Suppose

that the attracting fixed point of α and the repulsive fixed point of ε are −L ∈ R̂
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γ

α ε
δβ

Figure 2. A fundamental domain of an X piece

and M ∈ R̂, then

(a + A) = a − ac + b√
c2 − 1

I − L̃

2(c2 − 1)
(J + K) +

h(a, b, c)

2L̃
(J− K),

(b + B) = b − bc + a√
c2 − 1

I − L̃(c +
√

c2 − 1)

2(c2 − 1)
(J + K) +

h(a, b, c)(c −√
c2 − 1)

2L̃
(J −K),

(d + D) = d +
cd + e√
c2 − 1

I − M̃(c +
√

c2 − 1)

2(c2 − 1)
(J + K) +

h(c, d, e)(c −√
c2 − 1)

2M̃
(J− K),

(e + E) = e +
ce + d√
c2 − 1

I − M̃

2(c2 − 1)
(J + K) +

h(c, d, e)

2M̃
(J− K),

where

L̃ = L
√
c2 − 1(b + ac+

√
a2 − 1

√
c2 − 1),

M̃ = M
√
c2 − 1(d+ ce+

√
c2 − 1

√
e2 − 1),

h(u, v, w) = u2 + v2 + w2 + 2uvw − 1.

Proof. Using the special form of γ = (c + C) = (c +
√
c2 − 1 I) and the fact that

(A,C), (B,C), (D,C) and (E,C) are known in terms of traces, we can calculate
the components a1, b1, d1 and e1 (recall that the matrix without trace A can be
written as A = a1I + a2J + a3K).

We have the attracting fixed point of α (−L = a1+
√

a2−1
a2−a3

) and the repulsive fixed

point of ε (M = e1−
√

e2−1
e2−e3

). Thus we get (a2 − a3) and (e2 − e3). We know also
that α and ε are normalized, i.e. a2 − 1 = a2

1 + (a2 − a3)(a2 + a3) and e2 − 1 =
e21 +(e2 − e3)(e2 + e3). Therefore (a2 + a3) and (e2 + e3) can be expressed in terms
of traces. The solution of this set of linear equations is (after simplification) a2, a3,
e2 and e3.

We know that (A,B) = −ab− c = a1b1 + a2b2 − a3b3 and (D,E) = −c − de =
d1e1 + d2e2 − d3e3. Thus we get b2 and d2 as functions of b3 and d3. As β and δ
are normalized (b2 − 1 = b21 + b22 − b23 and d2 − 1 = d2

1 + d2
2 − d2

3) we can replace
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b2 and d2 by their functions of b3 and d3 in the normalizing condition. We get a
quadratic equation for each of b3 and d3 and we can exclude one of the solutions
for each of b3 and d3 because b2 − b3 > 0 as well as d2 − d3 > 0.

After simplification, we get the result. �

Remark. This proposition, together with proposition 9 proves also that every Y
piece can be constructed by a quotient H/〈hα, hβ〉, where α and β satisfy HY

because we can choose L̃ = 1 by a simultaneous conjugation of α, β and γ.

4.2. The Teichmüller space. We have now expressed α, β, γ, δ and ε in terms of
the traces a, b, c, d and e as well as the real numbers M̃ and L̃. Clearly, a, b, c, d
and e are invariant to conjugation, but M̃ and L̃ aren’t. We therefore introduce
the elements ξ = (x+X) = −(α ∗ δ)−1 and ζ = (z + Z) = −(β ∗ δ)−1 that give us
a certain measure of M̃ and L̃, and lead to the parameter space of the X piece in
terms of traces only:

P =
{
(a, b, c, d, e, x, z) ∈ R

7
∣∣∣a, b, c, d, e, x, z > 1

}
.

In fact we shall express M̃ and L̃ in terms of these traces if we really want P
to be the parameter space. But before that, let us consider the following lemma as
well as its corollary:

Lemma 11 (Helling). If H is the following matrix of internal products,

H =




(A,A) (A,B) (A,C) (A,D)
(B,A) (B,B) (B,C) (B,D)
(C,A) (C,B) (C,C) (C,D)
(D,A) (D,B) (D,C) (D,D)


 ,

then det(H) = 0.

Proof. The dimension of 2 by 2 matrices without trace is 3 (they are generated by
I, J and K). Therefore A,B,C and D are linearly dependent. Thus, the rows of
H are linearly dependent and det(H) = 0. �

Remark. H. Helling gives this lemma in [Hel74] in the wider context of eight ele-
ments {α1, . . . , α4, β1, . . . , β4} of an abstract group Γ and a trace function
s: Hs(α1, . . . , α4;β1, . . . , β4) = (hij)1≤i,j≤4; hij = s(αi ∗ βj) − s(α−1

i ∗ βj). For
s = 2 tr, it is easy to see that H = 1

4Hs(α, β, γ, δ;α, β, γ, δ).

Corollary 12. We have

Q = a2 + b2 + c2 + d2 + e2 + x2 + z2 + 4abde− 1

+ 2c(ab+ de) + 2x(ad+ be) + 2z(ae+ bd) − 2cxz = 0.

Proof. Using the fact that α, δ, ξ and β, δ, ζ constitute Y pieces, we get det(H) =
(a2 + b2 + c2 + 2abc− 1)Q. But we know that a2 + b2 + c2 + 2abc− 1 > 0, which
gives us the result. �

Proposition 13. The hyperbolic elements (a+A), (b+B), (d+D) and (e+E)
with the coordinates of proposition 10 constitute an X piece corresponding to
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(a, b, c, d, e, x, z) ∈ P, iff

M̃

L̃
= −ae+ bd+ (ad+ be)(c−

√
c2 − 1) +

√
c2 − 1((c−

√
c2 − 1)z − x)

h(a, b, c)
.

Let’s call the right-hand expression p.

Proof. We must show that (a+A), (b+B), (d+D) and (e+E) corresponding to
(a, b, c, d, e, x, z) ∈ P are such that

(†) (A,D) = −ad− x and (B,D) = −bd− z.

Furthermore we have to prove that p > 0 which implies a situation as in figure 2
(fixed points of α and ε of different signs).

With the coordinates of proposition 10, the equations † yield a non-degenerated
system of two equations linear in p̃ = M̃

L̃
and q̃ = L̃

M̃
. The unique solution for p̃ is

p but the solution for q̃ is not its inverse at first sight. However, we can extract a
factor Q from p̃q̃ − 1 which is therefore zero because of corollary 12.

The condition p > 0 is clearly equivalent to

ae+ bd+ (ad+ be)(c−
√
c2 − 1) +

√
c2 − 1((c−

√
c2 − 1)z − x) < 0.

If we solve this condition for z, we get z <
√

c2−1x−(ae+bd)−(ad+be)(c−√
c2−1)√

c2−1(c−√
c2−1)

. Let’s
call this last expression zasym.

Let’s now consider the polynomial of the corollary 12 as a function Q(x, z) whose
zero-set is a hyperbola. The branch of this hyperbola with x and z positive has
an upper asymptote (with respect to z) given by the equation z = zasym. Thus
z < zasym for all (x, z) on the branch of the hyperbola. This means p > 0 for any
set of parameters satisfying det(H) = 0. �
Remark. If we want to fix the fundamental domain of the X piece (i.e. not only up
to a homothetic transformation) we can for instance fix M̃ = p and L̃ = 1 in the
formula of proposition 10.

Theorem A. The subgroup of SL(2,R) acting on the upper half plane H by Möbius
transformations such that the quotient surface has signature (0, 4), is freely gen-
erated by (a + A), (b + B) and (d + D) or a simultaneous conjugation of these
three; where (a + A), (b + B) and (d + D) are the ones given in proposition 10,
M̃ = −ae+bd+(ad+be)(c−√

c2−1)+
√

c2−1((c−√
c2−1)z−x)

h(a,b,c) and L̃ = 1.
Where (a, b, c, d, e, x, z) is an element of Teichmüller space T of surfaces of sig-

nature (0, 4) in trace coordinates, i.e.

T := {(a, b, c, d, e, x, z) ∈ P |Q = 0}
with the parameter space

P :=
{
(a, b, c, d, e, x, z) ∈ R

7
∣∣∣a, b, c, d, e, x, z > 1

}
and the polynomial

Q := a2 + b2 + c2 + d2 + e2 + x2 + z2 + 4abde− 1

+ 2c(ab+ de) + 2x(ad+ be) + 2z(ae+ bd) − 2cxz = 0.

Proof. Direct deduction from proposition 10 and proposition 13 together with
Poincaré’s polyhedron theorem showing that figure 2 is the fundamental domain
for the X piece. �
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Remark. If we know the generating elements α, β and δ of an X piece in terms
of (positive trace) matrices, we can easily extract these trace coordinates of Te-
ichmüller space:

(a, b, c, d, e, x, z) = (tr(α), tr(β),−tr(α∗β), tr(δ), tr(α∗β∗δ),−tr(α∗δ),−tr(β∗δ)).
On the other hand, given a point in Teichmüller space, we can calculate the matrices
(up to conjugation) using proposition 10.

Note also that
{
(a, b, c, d, e, x, z) ∈ R7 |Q = 0} contains Teichmüller spaces of

other surfaces freely generated by three elements that are not necessarily hyperbolic
and such that the geodesics corresponding to α, β and δ might intersect (such as
triangle groups, twice punctured tori, etc.).

5. The modular group

It is possible to represent the same surface by different points in Teichmüller
space. The transformations mapping one of these points to another form a group
(see for instance [SS92]), the modular group.

The aim of this section is to prove the following theorem:

Theorem B. The modular group of Teichmüller space T of surfaces of signature
(0, 4) acts polynomially on T in these trace coordinates.

5.1. The generating elements. In order to prove theorem B, we show that there
are four polynomial elements of the modular group that generate the whole group.
The fact that the inverses of these elements are also polynomial implies that the
modular group contains only polynomial elements. But before giving the generating
elements, we state a well-known fact concerning quadratic equations which we will
use later on:

Lemma 14. Let P (x) ∈ R[x] be a polynomial of degree 2 with leading coefficient 1
and P (1) > 0. If the equation P (x) = 0 has a real solution λ1 > 1, then its other
solution λ2 is also greater than 1.

Proof. We know P (x) = (x − λ1)(x − λ2), P (1) > 0 and 1 − λ1 < 0. Thus
1 − λ2 < 0. �

Proposition 15. The following transformations are elements of the modular group
of Teichmüller space:

ϕ
Ya

: T −→ T : (a, b, c, d, e, x, z) �−→ (b, a, c, d, e, 2(cx− ae− bd) − z, x),
ϕYd

: T −→ T : (a, b, c, d, e, x, z) �−→ (a, b, c, e, d, 2(cx− ae− bd) − z, x),
ϕturn : T −→ T : (a, b, c, d, e, x, z) �−→ (b, d, z, e, a, 2(cz − ad− be) − x, c).

Proof. In each case we we look for elements α′, β′, δ′, ε′ ∈ SL(2,R) such that the
group of isometries 〈hα, hβ , hδ, hε〉 is the same as 〈h′α, h′β, h′δ, h′ε〉 and such that
α′ ∗ β′ ∗ δ′ ∗ ε′ = 1. Then we must show that ϕ(a, b, c, d, e, x, z) = (tr(α′), tr(β′),
−tr(α′ ∗ β′), tr(δ′), tr(ε′),−tr(α′ ∗ δ′),−tr(β′ ∗ δ′)) and that these coordinates are
all greater than 1. Thus they necessarily satisfy the condition det(H ′) = 0 because
that is a consequence of dim(H0) = 3.

In the first case we choose α′ = α ∗ β ∗ α−1, β′ = α, δ′ = δ, ε′ = ε. They clearly
generate the same group, α′ ∗ β′ ∗ δ′ ∗ ε′ = α ∗ β ∗α−1 ∗α ∗ δ ∗ ε = 1 and calculating
the traces of the new elements we get the coordinates of ϕ

Ya
(a, b, c, d, e, x, z). Con-

sidering the polynomial of corollary 12 as a polynomial Q(z) and using lemma 14,



TRACE COORDINATES OF TEICHMÜLLER SPACE FOR SIGNATURE (0, 4) 57

we prove that the two solutions z and 2(cx− ae− bd)− z to the equation Q(z) = 0
are both greater than 1. Thus the coordinates of ϕ

Ya
(a, b, c, d, e, x, z) are all greater

than 1.
In the second case we choose α′ = α, β′ = β, δ′ = δ ∗ ε ∗ δ−1 and ε′ = δ.
In the third case we choose α′=β, β′=δ, δ′=ε and ε′=α. Using lemma 14 for the

polynomial equation Q(x)=0, we prove that the two solutions x and 2(cz−ad−be)
− x are both greater than 1. Thus the coordinates of ϕ

turn
(a, b, c, d, e, x, z) are all

greater than 1 as well. �

Remark. The inverses of ϕ
Ya

, ϕ
Yd

and ϕ
turn

are also polynomial:

ϕ−1
Ya

: T −→ T : (a, b, c, d, e, x, z) �−→ (b, a, c, d, e, z, 2(cz − ad− be) − x),
ϕ−1

Yd
: T −→ T : (a, b, c, d, e, x, z) �−→ (a, b, c, e, d, z, 2(cz − ad− be) − x),

ϕ−1
turn

: T −→ T : (a, b, c, d, e, x, z) �−→ (e, a, z, b, d, 2(cz − ad− be) − x, c).

Geometrically, an element of the modular group can be interpreted as a choice
of other geodesics on the same surface. Figure 3 shows this for the transformations
of proposition 15.

As Teichmüller space can be defined as the space of isotopy classes of marked
complex structures of the Riemann surface (where two structures define the same
point in Teichmüller space if there exists a holomorphic homeomorphism homotopic
to the identity leading from one to the other), we can interpret an element of the
modular group as a homeomorphism between marked X pieces up to holomorphic
homeomorphisms homotopic to the identity. One representative of ϕ

Ya
is thus the

following transformation of the X piece: We (pointwise) fix the Y piece with border
geodesics (corresponding to) δ, ε and γ. We deform the Y piece with border α,
β and γ such that γ is fixed pointwise and such that the lengths of α and β are
exchanged (tr(α′) = tr(β), tr(β′) = tr(α)). Then we twist this Y piece along γ−1

half way round, fixing γ pointwise.
It is obvious that transformations ϕ

Ya
, ϕ

Yd
and ϕ

turn
cannot generate the mod-

ular group because they don’t permit a change of orientation for γ without an
exchange of the sets {a, b} and {d, e}. We thus introduce ϕ

inv
in proposition 16.

Proposition 16. The following transformation is an element of the modular group
of Teichmüller space:

ϕ
inv

: T −→ T : (a, b, c, d, e, x, z) �−→ (b, a, c, e, d, 2(cz − ad− be) − x, z).

It is an involution.

Proof. We choose α′ = β−1, β′ = α−1, δ′ = ε−1 and ε′ = δ−1. Again they generate
the same group and α′ ∗ β′ ∗ δ′ ∗ ε′ = β−1 ∗ α−1 ∗ ε−1 ∗ δ−1 = (−γ) ∗ (−γ−1) = 1.

Calculating the traces of the new elements we get the coordinates of
ϕ

inv
(a, b, c, d, e, x, z) (after some simplifications using corollary 12). The traces

are greater than 1 analogously to the proof of proposition 15.
Direct calculation leads to ϕ

inv
◦ ϕ

inv
(a, b, c, d, e, x, z) = (a, b, c, d, e, x, z). �

In order to prove that the elements ϕYa
, ϕYd

, ϕturn and ϕinv generate the whole
modular group, we need a result on a subgroup of the modular group of X pieces
fixing one of the building blocks (Y pieces).
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Figure 3. Other choices of the geodesics

Lemma 17. The set of elements of the modular group of the X piece that have
representatives that fix (pointwise) the Y piece whose border geodesics correspond
to δ, ε and γ form a cyclic subgroup generated by ϕ

Ya
.

Proof. Let ψ be a generic element of the set and consider ψ̃, its action on the
generators (α, β, δ, ε) ∈ SL(2,R)4. As the “right” Y piece (whose border geodesics
correspond to δ, ε and γ) is fixed, we can consider its action on (α, β) ∈ SL(2,R)2

only (δ and ε are fixed), i.e. ψ̃ : SL(2,R)2 −→ SL(2,R)2 : (α, β) �−→ (α′, β′) such
that α ∗ β = α′ ∗ β′.

It is easy to see that they form a group and it only remains to show that the
action of ϕ

Ya
defined by

ϕ̃Y : (α, β) �−→ (α ∗ β ∗ α−1, α)

generates the whole group.
As α ∗ β = ψ̃(α) ∗ ψ̃(β), the action ψ̃ maps (α, β) to either one of the following:

(1) (α ∗ β ∗ g, g−1),
(2) (α ∗ g, g−1 ∗ β) or
(3) (g, g−1 ∗ α ∗ β),

where g is a length-reduced word in α and β.
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Note that α′ = ψ̃(α) as well as ψ̃(β) must be conjugates of α and β because their
corresponding geodesics together with the geodesic corresponding to γ must form
the “left” Y piece and thus {tr(α), tr(β)} = {tr(α′), tr(β′)} and the geodesics corre-
sponding to α′ and β′ cannot change orientation (cf. proposition 8, the orientation
of the geodesic corresponding to γ is fixed).

Let us first consider the second case: Either g starts with α−1 and we are in case
(3) or it ends with α−1 (because α ∗ g must be a conjugate to α or β). But in that
case g−1 starts with α and therefore ends with β−1 (because g−1 ∗ β is a conjugate
to α or β) and we are in the case (1).

Let us now consider case (1) and prove the hypothesis by induction on the length
of g: If g = β−1, (α, β) maps to (α, β) and ψ̃ = id, if g = α−1, (α, β) maps to
(α∗β∗α−1, α) and ψ̃ = ϕ̃Y . Other one-letter words are not possible because α∗β∗g
as well as g−1 must be conjugates to α or β. Suppose now that the length of g
is n > 1 and that the hypothesis is true for any word strictly shorter than n. If
g doesn’t begin with β−1, then ϕ̃−1

Y (α ∗ β ∗ g, g−1) = (g−1, g ∗ α ∗ β ∗ g ∗ g−1) =
(α∗β ∗g′, g′−1) with length of g′ smaller than n because g must end with β−1 ∗α−1

and is a conjugate to α or β. If g does begin with β−1, then it must begin with
β−1 ∗ α−1 because α ∗ β ∗ g and g−1 must both be conjugates to α or β. But in
that case ϕ̃Y (α ∗ β ∗ g, g−1) = (α ∗ β ∗ g ∗ g−1 ∗ g−1 ∗ β−1 ∗α−1) = (α ∗ β ∗ g′, g′−1)
with length of g′ smaller than n.

The proof of case (3) is analogous to the one of case (1). �

Proposition 18. The elements ϕYa
, ϕYd

, ϕturn and ϕinv generate the modular
group of the X piece.

Proof. We have to prove that using these elements we can generate any set of
equivalent matrices {α′, β′, δ′, ε′}.

By the previous lemma, we know that the subgroup of the modular group of the
X piece that has representatives that fix γ = α ∗ β as well as δ and ε is generated
by ϕ

Ya
; the one that has representatives that fix γ = α ∗ β as well as α and β is

generated by ϕ
Yd

. Therefore, using ϕ
Ya
, ϕ

Yd
and ϕ

inv
, we can generate any set of

equivalent matrices {α′, β′, δ′, ε′} such that the dividing geodesic corresponding to
γ is fixed (but not its direction).

It remains to prove that we can generate any dividing geodesic. This we will do
in the following subsection. �

Remark. The group of permutations S4 acting on the set {a, b, d, e} is a subgroup
of the modular group of the X piece (and thus of the automorphism group of the
polynomial Q as studied in [BG99]). In fact, the modular group can be written
as an amalgamated product S4 ∗G Z2 of S4 and Z2 over some non-trivial group
G, where S4 is generated by s1 = ϕ

inv
◦ ϕ

Yd
, s2 = ϕ−1

Yd
◦ ϕ

turn
◦ ϕ

inv
◦ ϕ

Yd
and

s3 = ϕ
inv

◦ ϕ
Ya

and Z2 by ϕ
inv

.

Proof. The modular group can be generated by s1, s2, s3 and ϕinv , because ϕYa
=

ϕ
inv

◦ s3, ϕYd
= ϕ

inv
◦ s1 and ϕ

turn
= ϕ

inv
◦ s1 ◦ s2 ◦ s1.

s1, s2 and s3 generate S4 with the representation (see for instance [Art47]),

〈s1, s2, s3|s21 = s22 = s23 = 1, s1s2s1 = s2s1s2, s2s3s2 = s3s2s3, s1s3 = s3s1〉,

because all these relations hold.
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G is non-trivial because there are some relations between ϕ
inv

and si, for instance
s1 ◦ ϕinv ◦ s1 = s3 ◦ ϕinv ◦ s3. �

5.2. Dividing geodesics. In this subsection we will need some notions introduced
in [Sem88] as well as some new ones concerning dividing geodesics without self-
intersections, dividing the X piece into two Y pieces:

Definition 19. A geodesic segment without self-intersection on a Y piece with
endpoints on one or two boundary components will be called an arc3. Two non-
intersecting arcs are said to be parallel or homotopic if there exists a homeomor-
phism of the Y piece leaving the boundary components invariant and transforming
one arc into the other. A road is a simply connected domain on the Y piece be-
tween two adjacent parallel arcs. A square is a connected domain on the Y piece
that is not a road (if it is delimited by one geodesic arc and completely contains
a border geodesic, it will be called a roundabout). A long-road is a series of roads
(alternating on one of the Y pieces) on the X piece (two Y pieces glued together
along a border geodesic) leading from a roundabout to another.

In the following figure we illustrate these notions on an easy example:

Figure 4. Roundabouts, roads and a long-road on an X piece

If η is a dividing geodesic other than γ, then the X piece can be colored in red
and white (say) such that the colours change along η.

Let’s first consider only one Y piece defined by γ and two appropriate border
geodesics: As the Y piece is (topologically) nothing else but a one-holed cylinder
(border of the hole = γ), there can only be one homotopy class for the arcs of
η (the endpoints must lie on γ). Thus η delimits an α-roundabout (colored red,
say), a β-roundabout (can be either red or white) and some red and white roads in
between.

If the α− and β-roundabout have the same color (red), the geodesic η intersects
γ in a multiple of four points (|η ∩ γ| mod 4 = 0) otherwise |η ∩ γ| mod 4 = 2.

Definition 20. A neighbor of a dividing geodesic µ is a dividing geodesic ν such
that |µ ∩ ν| = 4.

3In this paper we only consider arcs with endpoints on the same boundary component.
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If the δ-roundabout is red (this implies the β-roundabout is white), we apply
ϕ−1

turn
◦ ϕ−1

Ya
◦ ϕturn . If the ε-roundabout is red, we apply ϕ−1

turn
. In the new con-

figuration, the new α- and β-roundabouts are red. In order to prove that we can
generate any dividing geodesic, it is thus enough to prove that we can generate any
dividing geodesic that doesn’t divide α and β.

We can therefore assume that the α- and β-roundabouts are red. Thus there
must be a red long-road connecting the α- and the β-roundabout. But the border
of such a long-road together with the two roundabouts is a closed curve, thus all
the arcs of η are on this long-road.

To complete the proof of proposition 18 we have to show that any long-road η
connecting the α- to the β-roundabout is an iterated neighbor of γ and that we
can generate any direct neighbor. To do this, we introduce diagrams for long-roads
leading from the α- to the β-roundabout corresponding to the geodesic η:

The border of the β-roundabout is an arc η̂ of η and an arc γ̂ of γ. Following γ
(in its direction), we choose a point P that is at a distance ρ > 0 from γ̂ such that
there is no intersection of γ and η between γ̂ and P . Now we punch a hole into the
surface in P and deform it into a disc in R2 (whose border corresponds to P ) with
four holes (that correspond to α, β, δ and ε). We contract α, β, δ and ε to four
points and deform the disc such that γ is a vertical segment oriented upward and
such that the points corresponding to α, β, δ and ε form a parallelogram whose
side (α, β) is vertical. Not tracing the border of the disc corresponding to P , we
get the diagram:

Figure 5. A long-road with its α- and β-roundabouts and its diagram

Remark. The choice of P induces that there are no roads enclosing the β-roundabout
in the diagram (such that an arc of the border of the road that is an arc of η fol-
lowed by an arc of γ \ {P} is freely homotopic to β). But there may be several
roads enclosing the α-, δ- and ε-roundabouts.

If there are no roads enclosing the α-roundabout, then η is a neighbor of γ.
Two diagrams are equal if they there is a homeomorphism leading from one to

the other. This means that a diagram of a dividing geodesic η separating α and β
from δ and ε is the same as the diagram of any multiple Dehn twist of η along γ
or γ−1.

The following algorithm acting on diagrams will show that any long-road η
leading from the α- to the β-roundabout is an iterated neighbor of γ. In fact,
at each step, it constructs a new long-road η′ that is a neighbor of η such that
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|η ∩ γ| > |η′ ∩ γ|; it stops when η has been reduced to a neighbor of γ:

Algorithm.
While the current diagram is not a neighbor of γ do the α-simplification step:

– orient the long-road from the α- towards the β-roundabout,
– with the road just beside the one leaving the α-roundabout that is oriented

in the same direction do the following transformation:

or

– remove the roads that are no longer part of the new long-road from the α-
to the β-roundabout;

Proof. At each simplification step we pass to a neighbor of the current diagram
(the four intersection points are emphasised), thus the final diagram is an iterated
neighbor of the original one. At each simplification step the number of parallel
roads decreases strictly because some are left out.

The α-simplification step is possible if there is a road that encloses the α-
roundabout as in figure 6 because in that case, this road can be oriented in either
direction without prohibiting the simplification step.

Figure 6. α-simplification possible

Thus, the only situations where the α-simplification step is not possible are the ones
in figure 7 where η is not a neighbor of γ and the road leaving the α-roundabout
is either adjacent to the δ- or the ε-roundabout and the red road next to it has
opposite direction, or there is no road enclosing the α-roundabout.

Figure 7. α-simplification impossible

We will prove that these situations are impossible, finishing by that the proof
of proposition 18: If the road leaving the α-roundabout is either adjacent to the
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δ- or the ε-roundabout, then we must be in one of the situations of figure 8 and the
α-simplification is possible.

Figure 8. α-simplification possible

If there is no road enclosing the α-roundabout, η must be a neighbor because of
the choice of the diagrams. �

This algorithm is not only an important step to the proof of proposition 18, it
is also very useful to prove the following proposition:

Proposition 21. If the geodesic γ is shorter than its neighbors, it is a shortest
geodesic dividing the X piece into two Y pieces whose boundaries contain α, β and
δ, ε respectively.

Proof. Let η be any such dividing geodesic and γ shorter than its neighbors. We
have to prove that there is a length decreasing sequence of iterated neighbors leading
from η to γ. In fact, using the algorithm, we have already constructed this sequence.
It remains to prove that the α-simplification step is length decreasing.

Take the arc of η that is part of the boundary of the α-roundabout and give its
intersection with γ the names A and B. Following γ we get to the next intersections
with η and name them C andD. We are thus in one of the following three situations:

G

H

C

D

A

B

E

F

A

B
C

D

E

F

B

D

C

AF

E

In the first situation the names ABCDEFGH come in that order on γ and in
the order ABECHGDF on η. We can now construct the curves γ′ and η′, longer
than and freely homotopic to neighbors of γ and η4:

– For γ′, we will first stay on η from A to E, then follow γ−1 to C, η to H ,
γ−1 to F and finish on η to close the curve in A.

– For η′, we follow γ from A to C, η−1 to E, γ to F , η−1 to H and finish on
γ to close the curve in A. Note that this curve is freely homotopic to the
geodesic obtained by the α-simplification step.

4A closed non-geodesic curve on any Riemann surface is strictly longer than its freely homotopic
geodesic (see [FLP79]).



64 THOMAS GAUGLHOFER AND KLAUS-DIETER SEMMLER

It remains to prove that the length of E to F plus the length of H to C on γ
is strictly smaller than the length of F to E plus the length of C to H on η:
l(E

γ−→ F ) + l(H
γ−→ C) < l(F

η−→ E) + l(C
η−→ H). This implies that the

length of η′ is smaller than the length of η (and thus that the α-simplification step
is length decreasing). Suppose now that l(E

γ−→ F )+ l(H
γ−→ C) ≥ l(F

η−→ E)
+ l(C

η−→ H). This implies l(γ′)− l(η) ≤ l(γ)− l(η) and thus l(γ′) ≤ l(γ) which is
in contradiction to the hypothesis that γ is shorter than its neighbors.

In the second situation the names ABCDEF come in that order on γ and in
the order ABCFED on η. We can now construct the curves γ′ and η′:

– For γ′, we follow η from A to F , then follow γ−1 to D and finish on η to
close the curve in A.

– For η′, we follow γ from A to D, η−1 to F and finish on γ to close the curve
in A. Note that this curve is freely homotopic to the geodesic obtained by
the α-simplification step.

Suppose that l(F
γ−→ D) ≥ l(D

η−→ F ). This implies l(γ′)− l(η) ≤ l(γ)− l(η) and
thus l(γ′) ≤ l(γ) which is in contradiction to the hypothesis that γ is shorter than
its neighbors. Thus l(F

γ−→ D) < l(D
η−→ F ) and therefore l(η′) < l(η).

The proof for the third situation is exactly analogous to the one for the second
(mirror situation). �

It remains to prove that we can generate any neighbor of γ:

Proposition 22. The neighbors of the dividing geodesic γ are of the form ϕ
X
◦

ϕn
Yd

(γ) where n ∈ Z and

ϕ
X

:= ϕ−1
turn

◦ ϕ
Yd

◦ ϕ
turn

◦ ϕ−1
Ya

◦ ϕ
turn

.

Proof. There are only two possible diagrams for neighbors:

These two diagrams can be obtained by

ϕ
X

(γ) = −δ−1 ∗ β−1 ∗ δ ∗ α−1 and ϕ
X
◦ ϕ−1

Yd
(γ) = −ε−1 ∗ β−1 ∗ ε ∗ α−1

but each diagram corresponds to more than only one geodesic. Indeed, if two
geodesics correspond to the same diagram there is a (multiple) Dehn twist along
γ that brings one onto the other. Therefore, all neighbors are of the form −γm ∗
δ−1 ∗ γ−m ∗ β−1 ∗ γm ∗ δ ∗ γ−m ∗α−1 or −γm ∗ ε−1 ∗ γ−m ∗ β−1 ∗ γm ∗ ε ∗ γ−m ∗α−1

for some m ∈ Z. But ϕX ◦ ϕ2m
Yd

(γ) = −γm ∗ ε−1 ∗ γ−m ∗ β−1 ∗ γm ∗ ε ∗ γ−m ∗ α−1

and ϕ
X
◦ ϕ2m−1

Yd
(γ) = −γm ∗ ε−1 ∗ γ−m ∗ β−1 ∗ γm ∗ ε ∗ γ−m ∗ α−1, hence the

proposition. �
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6. A fundamental domain for the modular group

Now that we know the modular group, we can solve the Riemann moduli problem
for surfaces of signature (0, 4) using the fundamental domain for the action of the
modular group in Teichmüller space T . This is the aim of this section.

We can get a pre-fundamental domain for the action of the modular group on T
using the trace of γ: For every element ϕ of the modular group we want tr(γ) ≤
tr(ϕ(γ)). In order to get a fundamental domain we can thus proceed as follows:

Let γ be a shortest dividing geodesic (equivalent to smallest possible trace) and
orient it arbitrarily. It cuts the X piece into two Y pieces. Take the Y piece that
contains the shortest boundary geodesic of the X piece, name this geodesic α and its
third boundary geodesic β and orient them such that α∗β ∗γ = −1. Let δ and ε be
the boundary geodesics of the X piece we haven’t yet named and orient them such
that α ∗β ∗ δ ∗ ε = 1 (there are two possibilities to do this). Now we use ϕ

Yd
or ϕ−1

Yd

repeatedly to “unwind” the X piece such that x ≤ cz−ad−be and z ≤ cx−ae−bd.
By the following lemma 23, this situation gives a global minimum for x + z. To
finish, we want to be in a unique situation and have z ≤ x which can be achieved
by applying ϕinv ◦ ϕYa

: T −→ T : (a, b, c, d, e, x, z) �−→ (a, b, c, e, d, z, x) if needed.
Actually, it is easy to prove that z ≤ x ≤ cz − ad − be and det(H) = 0 imply
z ≤ cx − ae − bd. Thus it only remains to translate “shortest dividing geodesic”
into terms of traces in order to get a fundamental domain.

Lemma 23. Let f : T → R : (a, b, c, d, e, x, z) �→ x + z and (a, b, c, d, e, x, z) ∈ T
such that x ≤ cz − ad − be and z ≤ cx − ae − bd. Then f(a, b, c, d, e, x, z) ≤
f(ϕn

Yd
(a, b, c, d, e, x, z)) for all n ∈ Z.

Proof. x ≤ cz − ad− be and z ≤ cx− ae− bd imply that (a, b, c, d, e, x, z) is a local
minimum of f under the action of ϕ

Yd
. It remains to prove that it is also a global

minimum, i.e. that ĝ : Z → R : n �→ f(ϕn
Yd

(a, b, c, d, e, x, z)) is a restriction of a
convex function g : R → R.

This is indeed the case as ϕn
Yd

(a, b, c, d, e, x, z) = (a, b, c, dn, en, xn, zn) can be
written as

xn = 1
c2−1

(√
h(a, b, c)h(c, d, e) cosh(A(n+ 1) +B) + kn+1

)
,

zn = 1
c2−1

(√
h(a, b, c)h(c, d, e) cosh(An+B) + kn

)
,

kn = c(adn + ben) + (aen + bdn),

(dn, en) =

{
(d, e) if n even,
(e, d) if n odd,

where cosh(A) = c,

cosh(B) =
z(c2 − 1) − (c(ad+ be) + (ae+ bd))√

h(a, b, c)h(c, d, e)
,

and h(u, v, w) = u2 + v2 + w2 + 2uvw − 1.

This implies that g can be given as

t �→
√
h(a, b, c)h(c, d, e) (cosh(A(t+ 1) +B) + cosh(At+B))

c2 − 1
+

(a+ b)(d+ e)
c− 1

,

which is a convex function in t. �
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Remark. In [KR78] and [FR95], the authors investigate similar cases for two gener-
ator Fuchsian groups, showing the existence of a global minimum without explicitly
giving a convex function.

Proposition 24. Let α = (a + A), β = (b + B), δ = (d + D) and ε = (e + E) be
the generators of an X piece, such that a = min{a, b, d, e}, z ≤ x ≤ cz − ad − be.
Then γ = −δ ∗ ε = (c+ C) is a shortest dividing geodesic, iff c ≤ z.

Proof. We must show that γ is shorter than its iterated neighbors, ξ, ζ and their
iterated neighbors (see section 5.2). We know that a dividing geodesic is shorter
than its iterated neighbors if it is shorter than its neighbors (see proposition 21).

We show that γ̄ := ϕ
X

(γ) is the shortest neighbor of γ: Its trace is
2(xz−ab−de)−c. All other neighbors are of the form ϕ

X
◦ϕn

Yd
(γ) (see proposition

22) and thus have traces 2(tr(ϕn
Yd

(ξ))tr(ϕn
Yd

(ζ)) − ab− de)− c. But as the X piece
is unwound, tr(ϕn

Yd
(ξ)) ≥ x and tr(ϕn

Yd
(ζ)) ≥ z for n even and tr(ϕn

Yd
(ξ)) ≥ z and

tr(ϕn
Yd

(ζ)) ≥ x for n odd.
We prove that γ is shorter than its shortest neighbor γ̄ if c ≤ z. For this we

construct two curves ζ1 and ζ2 both homotopic to ζ using only arcs of γ and γ̄:

– For ζ1, we follow γ from A to B, then take γ̄ to C, continue on γ back to
B and finish on γ̄ from B to A.

– For ζ2, we follow γ from C to D, then take γ̄ to A, continue on γ back to
D and finish on γ̄ from D to C;

where A,B,C,D are the intersections of γ and γ̄ as in figure 9:

Figure 9. γ and its neighbor γ̄ = ϕ
X

(γ)

Using the argument that the geodesic is always the shortest curve of its homotopy
class (see [FLP79]), we show that ζ is shorter than γ̄ which implies that γ is shorter
than γ̄: l(γ) + l(γ̄) = l(ζ1) + l(ζ2) > 2l(ζ). But c ≤ z, therefore l(γ) ≤ l(ζ), thus
l(ζ) < l(γ̄) and finally l(γ) < l(γ̄).

We show that ζ is shorter than its neighbors if c ≤ 2(xz − ab− de) − c = tr(γ̄):
Analogously to proposition 22, we can write the neighbors of ζ as ϕ

turn
◦ ϕ

X
◦

ϕn
Yd

◦ ϕ−1
turn

(ζ) and show that the geodesic ϕ
turn

◦ ϕ
X
◦ ϕ−1

Yd
◦ ϕ−1

turn
(ζ) is a shortest

neighbor of ζ if c ≤ 2(xz − ab − de) − c and x ≤ 2(cz − ad − be) − x. But
tr(ϕturn ◦ ϕX ◦ ϕ−1

Yd
◦ ϕ−1

turn
(ζ)) = 2(cx− ae− bd) − z ≥ z.

The proof that ξ is shorter than its neighbors if c ≤ 2(xz − ab − de) − c is
analogous, using the following shortest neighbor of ξ: ϕ−1

Ya
◦ϕ

inv
◦ϕ

turn
◦ϕ

X
◦ϕ−1

Yd
◦

ϕ−1
turn

◦ ϕinv ◦ ϕYa
(ξ) with trace 2(cz − ad− be) − x ≥ x. �
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This leads us to the fundamental domain F for the action of the modular group
on Teichmüller space T that can be formulated as follows:

Theorem C. The set of isometry classes of surfaces of signature (0, 4) is in a
1-1-correspondence with the set

F :=
{
(a, b, c, d, e, x, z) ∈ R7

∣∣∣ 1 < a ≤ min{b, d, e},
1 < c ≤ z ≤ x ≤ cz − ad− be

and Q = 0
}

where Q is the following polynomial:

Q := a2 + b2 + c2 + d2 + e2 + x2 + z2 + 4abde− 1
+2c(ab+ de) + 2x(ad+ be) + 2z(ae+ bd) − 2cxz = 0.

Proof. Direct deduction from proposition 18 and proposition 24 together with the-
orem A. �

Remark. The set F is contractible.

7. Fenchel-Nielsen coordinates

In this section we recall the definition of the Fenchel-Nielsen coordinates for
Riemann surfaces (see for instance [SS92]) and try to find the generating elements
of the modular group in these coordinates.

Let Σ be a purely hyperbolic Riemann surface of signature (g, b) and α1, α2, . . . ,
α3g−3+2b the oriented decomposing geodesics of a pants decomposition of Σ. On
each αj that is not a border geodesic, there exist two distinguished points P 1

j and
P 2

j obtained as follows (some choices are required): Build the perpendiculars to αj

and one of the adjacent boundaries on each pair of pants (Y piece). They have
P 1

j and P 2
j as common points with αj . Let sj denote the distance from P 1

j to P 2
j

measured to the positive direction of αj
5. We can now define the Fenchel-Nielsen

coordinates lj for j = 1, 2, . . . , 3g − 3 + 2b and θj for j such that αj that is not a
border geodesic, setting:

lj = length of αj ,
θj = 2πsj/lj .

In our case of an X piece we have thus the coordinates

(l1, l2, l3, l4, l5, θ3) = (l1, l2, l3, l4, l5, θ),

corresponding to the geodesic lengths and a twisting angle as in figure 10.
We can easily convert our trace coordinates into Fenchel-Nielsen coordinates but

it is more difficult to do the opposite as we will see in the following two propositions.

Proposition 25. If the trace coordinates of an X piece are (a, b, c, d, e, x, z), then
the Fenchel-Nielsen coordinates are

(l1, l2, l3, l4, l5, θ) = Ψ(a, b, c, d, e, x, z)
= (2 arccosh(a), 2 arccosh(b), 2 arccosh(c),

2 arccosh(d), 2 arccosh(e), θ),

5If we want the coordinates of Teichmüller space (and not already the quotient of it by some
elements of the modular group), we have to admit also distances sj greater than lj (going around

αj more than once) and even negative ones (following the opposite direction of αj); i.e. sj ∈ R.



68 THOMAS GAUGLHOFER AND KLAUS-DIETER SEMMLER

Figure 10. Fenchel-Nielsen coordinates

where

θ = 2π
ln(p(a, b, c, d, e, x, z)h(a, b, c)) − ln(h(c, d, e))

4 arccosh(c)
with

h(u, v, w) = u2 + v2 + w2 + 2uvw − 1
and

p(a, b, c, d, e, x, z) = −ae + bd + (ad + be)(c −√
c2 − 1) +

√
c2 − 1((c −√

c2 − 1)z − x)

h(a, b, c)
.

Proof. The trace of a closed geodesic is the hyperbolic cosine of half of its length (see
[Sem88]). It thus only remains to construct θ. In order to get the
distinguished points on γ we build the common perpendicular πγ,α to γ and
α (πγ,α := (

√
1 + (C ∧A,C ∧A) + C ∧ A)) and the common perpendicular πγ,ε

to γ and ε and intersect them with γ (these intersection points correspond to
πγ,πγ,α and πγ,πγ,ε). Using proposition 10 and definition 3 we get the points√
|L̃|/((c2 − 1)h(a, b, c)) i and

√
|M̃ |/((c2 − 1)h(c, d, e)) i in the upper half plane.

Thus their (signed) distance is

s =
1
2
(ln(p(a, b, c, d, e, x, z)h(a, b, c)) − ln(h(c, d, e))).

This determines θ. �

Proposition 26. If we know that the Fenchel-Nielsen coordinates of an X piece
are (l1, l2, l3, l4, l5, θ), then the trace coordinates are

(a, b, c, d, e, x, z) = Φ(l1, l2, l3, l4, l5, θ)

= (cosh(
l1
2

), cosh(
l2
2

), cosh(
l3
2

), cosh(
l4
2

), cosh(
l5
2

), x, z)

where (x, z) is the solution of the following system of equations:{
Q(a, b, c, d, e, x, z) = 0,
e2s h(c,d,e)

h(a,b,c) = p(a, b, c, d, e, x, z),

with
Q(a, b, c, d, e, x, z) = a2 + b2 + c2 + d2 + e2 + x2 + z2 + 4abde− 1

+ 2c(ab+ de) + 2x(ad+ be) + 2z(ae+ bd) − 2cxz,
s = θ

2π l3,
h(u, v, w) = u2 + v2 + w2 + 2uvw − 1 and
p(a, b, c, d, e, x, z) = −ae+bd+(ad+be)(c−√

c2−1)+
√

c2−1((c−√
c2−1)z−x)

h(a,b,c) .
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Proof. Considering the relation between trace and length of a geodesic, a, b, c, d and
e are straightforward. As s = 1

2 (ln(p(a, b, c, d, e, x, z)h(a, b, c)) − ln(h(c, d, e))), we
have e2s h(c,d,e)

h(a,b,c) = p(a, b, c, d, e, x, z). We want a point in the Teichmüller space of
X pieces, thus Q(a, b, c, d, e, x, z) = 0. It remains to prove that there is only one
solution to the system of equations, but this is easy, as the set of all solutions (in
the xz-plane) to the linear equation p(a, b, c, d, e, x, z) = 0 is an asymptote to the
hyperbola defined by Q(a, b, c, d, e, x, z) = 0 (see the proof of proposition 13). �

Remark. We could have explicitly given x and z in terms of Fenchel-Nielsen coor-
dinates, but the terms get very big.

We can now build the generating elements of the modular group in Fenchel-
Nielsen coordinates using the fact that Ψ and Φ are inverse isomorphisms. We
proceed as follows:

For a given element ϕ of the modular group in trace coordinates, we construct
ϕF-N := Φ ◦ ϕ ◦ Ψ which is an element of the modular group in Fenchel-Nielsen co-
ordinates because Ψ and Φ are inverse isomorphisms; hence, the following diagram
commutes:

T
ϕ

�� T

Ψ

��

T F-N
ϕF-N

��

Φ

��

T F-N

If we apply this procedure to ϕ
Ya
, ϕ

Yd
, ϕ

inv
and ϕ

turn
, we obtain

ϕF-N
Ya

: (l1, l2, l3, l4, l5, θ) �−→ (l2, l1, l3, l4, l5, θ + π),

ϕF-N
Yd

: (l1, l2, l3, l4, l5, θ) �−→ (l1, l2, l3, l5, l4, θ + π),

ϕF-N
inv

: (l1, l2, l3, l4, l5, θ) �−→ (l2, l1, l3, l5, l4,−θ),

ϕF-N
turn

: (l1, l2, l3, l4, l5, θ) �−→ (l2, l4, 2 arccosh(z), l5, l1, τ);

where

τ = 2π
ln(p(ϕturn (a, b, c, d, e, x, z))h(b, d, z))− ln(h(z, e, a))

4 arccosh(z)
with (a, b, c, d, e, x, z) = Φ(l1, l2, l3, l4, l5, θ).

8. Intersecting geodesics

The fact that the parameterization we chose for the X piece depends only on
lengths of geodesics gives us a powerful tool using simple mathematics to state
general results on geodesic lengths on any purely hyperbolic (no elliptic or para-
bolic elements in its fundamental group) Riemann surface. In this section we give
evidence to this by treating the following question: Is there a certain constant in-
dependent of the surface such that two geodesics of lengths smaller than it cannot
intersect more than once?

Remark. P. Buser treats a similar problem in [Bus92] and gives the following result
using collars: On a purely hyperbolic Riemann surface, two geodesics shorter than
2 arcsinh(1) = 2 arccosh(

√
2) are pairwise disjoint.
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Lemma 27. Let (a, b, c, d, e, x, z) be an element of the Teichmüller space of Rie-
mann surfaces of signature (0, 4). Then (z−1)(c−1) ≥ 4a2

m (am = min{a, b, d, e}).

Proof. By corollary 12 we know that Q = 0. The discriminant disc(Q, x) of Q in
respect to x must therefore be positive. But disc(Q, x)(z) is a quadratic polynomial
in z that is negative if evaluated in 1 (disc(Q, x)(1) < 0). Thus z must be greater
than its right root, i.e.

z ≥ ae+ bd+ c(ad+ be) +
√
h(a, b, c)h(c, d, e)

c2 − 1

≥ 2(c+ 1)a2
m + h(am, am, c)
c2 − 1

=
4a2

m

c− 1
+ 1.

But this is equivalent to (z − 1)(c− 1) ≥ 4a2
m. �

Corollary 28. If, on an X piece, there are two closed geodesics γ and ζ of lengths
l1 and l2 that intersect twice, then max{l1, l2} > 2 arccosh(3). This bound is sharp.

Remark. In terms of traces, this means that if two elements γ and ζ of a subgroup
of SL(2,R) corresponding to an X piece are such that max{tr(γ), tr(ζ)} ≤ 3, then
their corresponding geodesics intersect at most once.

Proof. As the smallest self-intersecting geodesics on any Riemann surface is a figure
eight geodesic (cf. [Bus92]) and as any figure eight geodesic on a purely hyperbolic
Riemann surface is strictly longer than 4 arcsinh(1) = 2 arccosh(3) (cf. [Bus92]), we
can suppose that γ and ζ are simple (non-self-intersecting).

As any simple closed geodesic (other than the border geodesics) on an X piece
is dividing, we are in the situation of figure 11.

Figure 11. Two intersections on an X piece

Thus, there is an element (a, b, c = cosh(l1/2), d, e, x, z = cosh(l2/2)) of
Teichmüller space of Riemann surfaces of signature (0, 4) corresponding to the X
piece.

Lemma 27 implies (z− 1)(c− 1) > 4 and thus max{z, c} > 3 which is equivalent
to max{l1, l2} > 2 arccosh(3).

It is easy to see that for any ρ > 0, (1+ ρ
2 , 1+ ρ

2 , 3+ρ, 1+ ρ
2 , 1+ ρ

2 , 7+4ρ+ ρ2

2 , 3+ρ)
is an element of moduli space of surfaces of signature (0, 4) that has two geodesics of
lengths 2 arccosh(3+ ρ) that intersect twice, hence the sharpness of the bound. �

Lemma 29. If, on a Q piece (a surface of signature (1, 1)), there are two closed
geodesics γ and ζ of lengths l1 and l2 that intersect twice, then max{l1, l2} >
2 arccosh(2). This bound is sharp.
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Proof. We will use several results of [BS88], investigating the length spectrum of
the one-holed torus. Indeed, in [BS88], the authors establish that the geodesics
corresponding to the first three lengths of the spectrum (of simple non-boundary
geodesics) intersect only once and are such that their traces b, m and c (i.e.
cosh(lengths/2)) satisfy 1 < b ≤ m ≤ c ≤ bm and e−1

2 = c(2bm − c) − m2 − b2

where e is the trace of the boundary geodesic η and z = 2bm− c is the trace of the
forth shortest simple non-boundary geodesic.

As γ and ζ intersect twice, the minimum of max{l(γ), l(ζ)} is obtained when they
are third and forth shortest and have equal length, i.e. c = bm = z, where c = tr(γ)
and z = tr(ζ). But in that case, 0 < e−1

2 = b2m2− b2−m2 ≤ b2m2−2bm and thus
c = z > 2, which is not possible for c = cosh(l1/2) ≤ 2 and z = cosh(l2/2) ≤ 2.

It is easy to see that for any ρ > 0, (
√

2 + ρ,
√

2 + ρ, 2 + ρ) is an element of
moduli space of surfaces of signature (1, 1) (as established in [BS88]), that has two
geodesics of lengths 2 arccosh(2+ρ) that intersect twice, hence the sharpness of the
bound. �

Lemma 30. Let γ and ζ be two simple closed geodesics on a Riemann surface that
intersect more than twice and whose lengths are l1 and l2. Then there exist two
closed geodesics γ′ and ζ′ with lengths l′1 and l′2 such that l′1 ≤ l1 and l′2 ≤ l2 and
such that either one of γ′ and ζ′ is not simple or |γ′ ∩ ζ′| = 2.

Proof. Put an arbitrary orientation on ζ. Take one intersection point and name itA.
From A go along ζ (following the chosen orientation) to the next intersection point,
name it B, follow ζ to the next intersection point and name it C. Now orient γ
such that ABC come in that order on it (there might be some intersections between
A and B, B and C, C and A). Considering the collar (stable neighborhood) of ζ,
there are now two possible situations:

(1) The A intersection has the same orientation as the C intersection:

(2) There is no orientation of ζ and no intersection that we can name A such
that we are in the first situation. It is easy to see that in this case there
must be an intersection that can be named A and an orientation of ζ such
that the A intersection has the same orientation as the B intersection:

In situation (1), we build the oriented curves γ̃′ and ζ̃′ as follows:
– If the oriented segment from C to A on ζ is shorter than the corresponding

segment on γ, we define ζ̃′ = ζ and γ̃′ the curve obtained by following γ
from A to C then ζ back to A.
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– If not, we define γ̃′ = γ and ζ̃′ the curve obtained by following ζ from A to
C then γ back to A.

In both cases γ̃′ and ζ̃′ intersect exactly twice and are shorter than γ and ζ. Take
the geodesics γ′ and ζ′ homotopic to γ̃′ and ζ̃′. They still intersect twice and using
the argument that the geodesic is always the shortest curve of its homotopy class
(see [FLP79]), we show that γ′ and ζ′ are shorter than γ and ζ.

In situation (2) we build the oriented curves γ̃′ and ζ̃′ as follows:
– If the oriented segment from A to B on ζ is shorter than the corresponding

segment on γ, we define ζ̃′ = ζ and γ̃′ the curve obtained by following γ
from B to A then ζ back to B.

– If not, we define γ̃′ = γ and ζ̃′ the curve obtained by following ζ from B to
A then γ back to B.

In both cases γ̃′ and ζ̃′ and thus the homotopic geodesics γ′ and ζ′ are shorter than
γ and ζ. If we are in the second case, and if there is an intersection between A
and B on γ, then ζ′ is not simple. In every other case, we have diminished the
intersection number by exactly one.

Iterating this procedure, we get two geodesics that are shorter and either intersect
one another twice or have self-intersections. �
Proposition 31. If, on a purely hyperbolic Riemann surface, there are two closed
geodesics γ and ζ of lengths l1 and l2 both smaller than (or equal to) 2 arccosh(2),
then they intersect at most once. This bound is sharp.

Remark. In terms of traces, this means that if two elements γ and ζ of a subgroup of
SL(2,R) corresponding to a Riemann surface are such that max{tr(γ), tr(ζ)} ≤ 2,
then their corresponding geodesics intersect at most once.

Proof. For the first part of the proposition, we suppose that γ and ζ intersect more
than once and show that this implies that max{l1, l2} > 2 arccosh(2). The second
part is proven by the sharpness of the bound for Q pieces (lemma 29).

As in the proof of corollary 28, we can suppose that γ and ζ are simple (otherwise
they are longer than 4 arcsinh(1) = 2 arccosh(3), cf. [Bus92]).

Suppose now that γ and ζ intersect exactly twice, call their intersections A and
B, and give them an arbitrary orientation. Considering the collar of ζ, there are
two possible situations (up to orientation):

(1) In the first situation, we build the oriented curves α̃, β̃, δ̃ and ε̃:
– For α̃, we follow γ−1 from A to B, then back to A on ζ.
– For β̃, we follow ζ−1 from A to B, then back to A on γ−1.
– For δ̃, we follow γ from A to B, then back to A on ζ−1.
– For δ̃, we follow ζ from A to B, then back to A on γ.
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None of these curves are null-homotopic because otherwise γ and ζ would be
homotopic to two other geodesics intersecting at most once, but in each homotopy
class there is only one geodesic (cf. [FLP79]). The geodesics α, β, δ and ε homotopic
to α̃, β̃, δ̃ and ε̃ may be the same but otherwise do not intersect because we can
build the homotopic curves ᾱ, β̄, δ̄ and ε̄ that do not intersect:

We can now cut the surface along the geodesics α, β, δ and ε and get a surface
that is a Nielsen kernel of an X piece containing γ and ζ. By corollary 28 we know
that max{l1, l2} > 2 arccosh(3).

(2) In the second situation, we build the oriented curves α̃ and β̃:
– For α̃, we follow γ−1 from A to B, then ζ−1 back to A, then γ to B and

finish on ζ back to A.
– For β̃, we follow ζ−1 from A to B, then γ−1 back to A, then ζ to B and

finish on γ back to A.
One of these curves may be null-homotopic, but not both because otherwise the

surfaces would be a torus as can be seen cutting the surface along ζ and from A to
B along γ and tracing the curves ᾱ and β̄ homotopic to α̃ and β̃ and (if they are
not null-homotopic) to the geodesics α and β as follows:

If one of ᾱ and β̄ is null-homotopic (say β̄ ∼ 0), we cut along the geodesic other
geodesic (in our case α) and get a surface that is the Nielsen kernel of a Q piece
and contains both γ and ζ (see figure 12). We conclude by lemma 29, knowing that
max{l1, l2} > 2 arccosh(2) in this case.

Figure 12. Situation of a Q piece

If none of ᾱ and β̄ is null-homotopic, we cut the original surface along the
geodesics α and β and get a surface that is the Nielsen kernel of a Fish piece (a
surface of signature (1, 2)) and contains both γ and ζ (see figure 13).
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Figure 13. Situation of a fish piece

Let δ be a geodesic intersecting γ twice, such that α, δ and ζ are the border
geodesics of a Y piece (dotted in figure 13). If we cut along δ, we get an X piece
with boundary geodesics α, β, δ and a copy of δ that has ζ as a dividing geodesic.
Let η now be another dividing geodesic that does not intersect the geodesic arcs
constituting γ. Let z = cosh(l(ζ)/2), a = cosh(l(α)/2), b = cosh(l(β)/2), d =
cosh(l(δ)/2) and e = cosh(l(η)/2). By the proof of lemma 27, we know that

z ≥ d(a+ b)(e+ 1) +
√
h(a, b, e)(e+ 1)(e− 1 + 2d2)
e2 − 1

>
2d+

√
(e+ 1)(e− 1 + 2d2)

e2 − 1
.

This quantity is minimal for δ, the forth shortest geodesic, and γ, the third shortest
geodesic on the Nielsen kernel of a Q piece (obtained by cutting apart the original
surface along η) because γ and δ intersect each other twice and we want γ to be
shorter than δ (otherwise c = cosh(l(γ)/2) > 2 by lemma 27). But on this Q
piece we have e−1

2 = cd − m2 − n2 < d(c − 1) because c = 2mn − d and thus
(m− n)2 < m2 + n2 − d (cf. proof of lemma 29 and [BS88]). This implies

z >
2d+

√
(e+ 1)(e− 1 + 2d2)

e2 − 1
=

d
e−1
2

+

√
e+ 1
e− 1

(
1 +

d2

e−1
2

)

>
1

c− 1
+

√
1 +

d

c− 1
> 2 if c < 2,

which proves the proposition. �
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spectrale, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2000.
[BS88] P. Buser and K.-D. Semmler, The geometry and spectrum of the one-holed torus, Com-

ment. Math. Helv. 63 (1988), no. 2, 259–274. MR0948781 (89k:58286)

[Bus92] P. Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics,
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