Sphericalization and flattening
HTML articles powered by AMS MathViewer
- by Zoltán M. Balogh and Stephen M. Buckley PDF
- Conform. Geom. Dyn. 9 (2005), 76-101 Request permission
Abstract:
The conformal deformations of flattening and sphericalization of length metric spaces are considered. These deformations are dual to each other if the space satisfies a simple quantitative connectivity property. Moreover, the quasihyperbolic metrics corresponding to the flat and the spherical metrics are bilipschitz equivalent if a weaker connectivity condition is satisfied.References
- K. Astala and F. W. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Michigan Math. J. 32 (1985), no. 1, 99–107. MR 777305, DOI 10.1307/mmj/1029003136
- Kari Astala and Pekka Koskela, Quasiconformal mappings and global integrability of the derivative, J. Anal. Math. 57 (1991), 203–220. MR 1191747, DOI 10.1007/BF03041070
- Zoltán M. Balogh and Stephen M. Buckley, Geometric characterizations of Gromov hyperbolicity, Invent. Math. 153 (2003), no. 2, 261–301. MR 1992014, DOI 10.1007/s00222-003-0287-6
- Zoltán M. Balogh and Pekka Koskela, Quasiconformality, quasisymmetry, and removability in Loewner spaces, Duke Math. J. 101 (2000), no. 3, 554–577. With an appendix by Jussi Väisälä. MR 1740689, DOI 10.1215/S0012-7094-00-10138-X
- Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001), viii+99. MR 1829896
- Mario Bonk, Juha Heinonen, and Steffen Rohde, Doubling conformal densities, J. Reine Angew. Math. 541 (2001), 117–141. MR 1876287, DOI 10.1515/crll.2001.089
- Mario Bonk and Pekka Koskela, Conformal metrics and size of the boundary, Amer. J. Math. 124 (2002), no. 6, 1247–1287. MR 1939786, DOI 10.1353/ajm.2002.0034
- Mario Bonk, Pekka Koskela, and Steffen Rohde, Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. (3) 77 (1998), no. 3, 635–664. MR 1643421, DOI 10.1112/S0024611598000586
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747 [He1]He1 D. Herron, Quasiconformal deformations and volume growth, preprint.
- David A. Herron, Conformal deformations of uniform Loewner spaces, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 325–360. MR 2040578, DOI 10.1017/S0305004103007199
- Stephen Semmes, Bi-Lipschitz mappings and strong $A_\infty$ weights, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 211–248. MR 1234732 [Se2]Se2 S. Semmes, On the nonexistence of bilipschitz parametrization and geometric problems about $A_{\infty }$ weights, Rev. Math. Iberoamericana 12 (1996), 345–360.
- Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548. MR 1642158
- Jeremy T. Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001), 21–73. MR 1872156, DOI 10.1090/S1088-4173-01-00064-9
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
Additional Information
- Zoltán M. Balogh
- Affiliation: Departament Mathematik, Universität Bern, Sidlerstrasse 5, 3012, Bern, Schweiz
- Email: zoltan@math-stat.unibe.ch
- Stephen M. Buckley
- Affiliation: Department of Mathematics, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Email: sbuckley@maths.nuim.ie
- Received by editor(s): October 26, 2004
- Received by editor(s) in revised form: September 28, 2005
- Published electronically: November 29, 2005
- Additional Notes: This research was partially supported by the Swiss Nationalfond and Enterprise Ireland. It was partly conducted during a visit by the second author to the University of Bern; the hospitality of the Mathematics Department was much appreciated.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 9 (2005), 76-101
- MSC (2000): Primary 30F45
- DOI: https://doi.org/10.1090/S1088-4173-05-00124-4
- MathSciNet review: 2179368