An explicit counterexample to the equivariant $K=2$ conjecture
HTML articles powered by AMS MathViewer
- by Yohei Komori and Charles A. Matthews
- Conform. Geom. Dyn. 10 (2006), 184-196
- DOI: https://doi.org/10.1090/S1088-4173-06-00153-6
- Published electronically: August 24, 2006
- PDF | Request permission
Abstract:
We construct an explicit example of a geometrically finite Kleinian group $G$ with invariant component $\Omega$ in the Riemann sphere $\textbf {\hat {C}}$ such that any quasiconformal map from $\Omega$ to the boundary of the convex hull of $\textbf {\hat {C}} - \Omega$ in $\textbf {H^3}$ which extends to the identity map on their common boundary in $\textbf {\hat {C}}$, and which is equivariant under the group of Möbius transformations preserving $\Omega$, must have maximal dilatation $K > 2.002$.References
- Christopher J. Bishop, Quasiconformal Lipschitz maps, Sullivan’s convex hull theorem and Brennan’s conjecture, Ark. Mat. 40 (2002), no. 1, 1–26. MR 1948883, DOI 10.1007/BF02384499
- Christopher J. Bishop, An explicit constant for Sullivan’s convex hull theorem, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 41–69. MR 2145055, DOI 10.1090/conm/355/06444
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR 903852
- D. B. A. Epstein and V. Markovic, The logarithmic spiral: a counterexample to the $K=2$ conjecture, Ann. of Math. (2) 161 (2005), no. 2, 925–957. MR 2153403, DOI 10.4007/annals.2005.161.925
- D. B. A. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305–336. MR 2052356, DOI 10.4007/annals.2004.159.305
- L. Keen, H. E. Rauch, and A. T. Vasquez, Moduli of punctured tori and the accessory parameter of Lamé’s equation, Trans. Amer. Math. Soc. 255 (1979), 201–230. MR 542877, DOI 10.1090/S0002-9947-1979-0542877-9
- Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719–749. MR 1241870, DOI 10.1016/0040-9383(93)90048-Z
- Linda Keen and Caroline Series, How to bend pairs of punctured tori, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 359–387. MR 1476997, DOI 10.1090/conm/211/02830
- Linda Keen and Caroline Series, Pleating invariants for punctured torus groups, Topology 43 (2004), no. 2, 447–491. MR 2052972, DOI 10.1016/S0040-9383(03)00052-1
- Charles A. Matthews, Approximation of a map between one-dimensional Teichmüller spaces, Experiment. Math. 10 (2001), no. 2, 247–265. MR 1837674, DOI 10.1080/10586458.2001.10504446
- John R. Parker and Jouni Parkkonen, Coordinates for quasi-Fuchsian punctured torus spaces, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 451–478. MR 1668328, DOI 10.2140/gtm.1998.1.451
- Dennis Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension $3$ fibrées sur $S^{1}$, Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 196–214 (French). MR 636524 [Thu98]thurston William P. Thurston, Hyperbolic structures on 3-manifolds, II: surface groups and 3-manifolds which fiber over the circle, eprint available at http://arXiv.org as paper number math.GT/9801045, 1998.
Bibliographic Information
- Yohei Komori
- Affiliation: Department of Mathematics, Osaka City University, Osaka 558-8585, Japan
- Email: komori@sci.osaka-cu.ac.jp
- Charles A. Matthews
- Affiliation: Department of Mathematics, Southeastern Oklahoma State University, Durant, Oklahoma 74701
- Email: cmatthews@sosu.edu
- Received by editor(s): April 20, 2006
- Published electronically: August 24, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 10 (2006), 184-196
- MSC (2000): Primary 30F40, 30F60, 32G15, 57M50
- DOI: https://doi.org/10.1090/S1088-4173-06-00153-6
- MathSciNet review: 2261047