Non-persistently recurrent points, qc-surgery and instability of rational maps with totally disconnected Julia sets
HTML articles powered by AMS MathViewer
- by Peter M. Makienko PDF
- Conform. Geom. Dyn. 10 (2006), 197-202 Request permission
Abstract:
Let $R$ be a rational map with a totally disconnected Julia set $J(R)$. If the postcritical set on $J(R)$ contains a non-persistently recurrent (or conical) point, then we show that the map $R$ cannot be a structurally stable map.References
- Bodil Branner and John H. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), no. 3-4, 229–325. MR 1194004, DOI 10.1007/BF02392761
- M. Denker, R. D. Mauldin, Z. Nitecki, and M. Urbański, Conformal measures for rational functions revisited, Fund. Math. 157 (1998), no. 2-3, 161–173. Dedicated to the memory of Wiesław Szlenk. MR 1636885, DOI 10.4064/fm_{1}998_{1}57_{2}-3_{1}_{1}61_{1}73
- Mikhail Lyubich and Yair Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), no. 1, 17–94. MR 1601430
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), no. 4, 535–593. MR 1789177, DOI 10.1007/s000140050140
- Curtis T. McMullen and Dennis P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), no. 2, 351–395. MR 1620850, DOI 10.1006/aima.1998.1726
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- Feliks Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2081–2099. MR 1615954, DOI 10.1090/S0002-9947-99-02195-9
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140, DOI 10.24033/asens.1522
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985), no. 3-4, 243–260. MR 806415, DOI 10.1007/BF02392543
Additional Information
- Peter M. Makienko
- Affiliation: Instituto de Matematicas, Av. Universidad S/N., Col. Lomas de Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico
- Received by editor(s): June 13, 2005
- Published electronically: September 6, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 10 (2006), 197-202
- MSC (2000): Primary 37F45; Secondary 37F30
- DOI: https://doi.org/10.1090/S1088-4173-06-00142-1
- MathSciNet review: 2261048