## Finite simultaneous bending

HTML articles powered by AMS MathViewer

- by Reza Chamanara PDF
- Conform. Geom. Dyn.
**10**(2006), 203-226 Request permission

## Abstract:

We construct a finite approximation to a Jordan curve with the given pair of bending measured laminations.## References

- Lipman Bers,
*Simultaneous uniformization*, Bull. Amer. Math. Soc.**66**(1960), 94–97. MR**111834**, DOI 10.1090/S0002-9904-1960-10413-2 - Francis Bonahon,
*Kleinian groups which are almost Fuchsian*, J. Reine Angew. Math.**587**(2005), 1–15. MR**2186972**, DOI 10.1515/crll.2005.2005.587.1 - Xiliang Bao and Francis Bonahon,
*Hyperideal polyhedra in hyperbolic 3-space*, Bull. Soc. Math. France**130**(2002), no. 3, 457–491 (English, with English and French summaries). MR**1943885**, DOI 10.24033/bsmf.2426 - Francis Bonahon and Jean-Pierre Otal,
*Laminations measurées de plissage des variétés hyperboliques de dimension 3*, Ann. of Math. (2)**160**(2004), no. 3, 1013–1055 (French, with English summary). MR**2144972**, DOI 10.4007/annals.2004.160.1013 - Phil Bowers and Kenneth Stephenson,
*A branched Andreev-Thurston theorem for circle packings of the sphere*, Proc. London Math. Soc. (3)**73**(1996), no. 1, 185–215. MR**1387087**, DOI 10.1112/plms/s3-73.1.185
CS Y.E. Choi, C. Series, - D. B. A. Epstein and A. Marden,
*Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces*, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR**903852** - F. P. Gardiner, J. Hu, and N. Lakic,
*Earthquake curves*, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 141–195. MR**1940169**, DOI 10.1090/conm/311/05452 - Zheng-Xu He,
*Rigidity of infinite disk patterns*, Ann. of Math. (2)**149**(1999), no. 1, 1–33. MR**1680531**, DOI 10.2307/121018 - Craig D. Hodgson and Igor Rivin,
*A characterization of compact convex polyhedra in hyperbolic $3$-space*, Invent. Math.**111**(1993), no. 1, 77–111. MR**1193599**, DOI 10.1007/BF01231281 - Ravi S. Kulkarni and Ulrich Pinkall,
*A canonical metric for Möbius structures and its applications*, Math. Z.**216**(1994), no. 1, 89–129. MR**1273468**, DOI 10.1007/BF02572311 - Linda Keen and Caroline Series,
*Pleating invariants for punctured torus groups*, Topology**43**(2004), no. 2, 447–491. MR**2052972**, DOI 10.1016/S0040-9383(03)00052-1 - Linda Keen and Caroline Series,
*How to bend pairs of punctured tori*, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 359–387. MR**1476997**, DOI 10.1090/conm/211/02830
R1 I. Rivin, - Igor Rivin,
*A characterization of ideal polyhedra in hyperbolic $3$-space*, Ann. of Math. (2)**143**(1996), no. 1, 51–70. MR**1370757**, DOI 10.2307/2118652 - Igor Rivin,
*Euclidean structures on simplicial surfaces and hyperbolic volume*, Ann. of Math. (2)**139**(1994), no. 3, 553–580. MR**1283870**, DOI 10.2307/2118572 - Caroline Series,
*On Kerckhoff minima and pleating loci for quasi-Fuchsian groups*, Geom. Dedicata**88**(2001), no. 1-3, 211–237. MR**1877217**, DOI 10.1023/A:1013171204254
S2 C. Series, - Harumi Tanigawa,
*Grafting, harmonic maps and projective structures on surfaces*, J. Differential Geom.**47**(1997), no. 3, 399–419. MR**1617652**
Th1 W.P. Thurston,

*Lengths are coordinates for convex structures*, J. Differential Geometry, to appear.

*On geometry of convex polyhedra in hyperbolic $3$-space*, Ph.D. Thesis, Princeton, 1986.

*Limits of quasifuchsian groups with small bending*, Duke J. Mathematics, to appear.

*The geometry and topology of $3$-manifolds*, Princeton University Lecture Notes, Online at http://www.msri.org/publications/books/gt3m, 1982. Th2 W.P. Thurston,

*Earthquakes in two-dimensional hyperbolic geometry*, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), 91–112, London Math. Soc. Lecture Note Ser., 112, Cambridge Univ. Press, Cambridge, 1986.

## Additional Information

**Reza Chamanara**- Affiliation: Institute for Studies in Theoretical Physics and Mathematics (IMP), Tehran, Iran
- Address at time of publication: Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York 11794-3660
- Email: rchamanara@math.sunysb.edu
- Received by editor(s): March 22, 2004
- Received by editor(s) in revised form: April 3, 2006
- Published electronically: September 21, 2006
- Additional Notes: This research was in part supported by a grant from IPM (No. 83510120)
- © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn.
**10**(2006), 203-226 - MSC (2000): Primary 51M15, 51B10; Secondary 51N25, 51M10, 30F40
- DOI: https://doi.org/10.1090/S1088-4173-06-00119-6
- MathSciNet review: 2261049