A note on conformal connections on lightlike hypersurfaces
HTML articles powered by AMS MathViewer
- by Cyriaque Atindogbe and Lionel Berard-Bergery
- Conform. Geom. Dyn. 11 (2007), 1-11
- DOI: https://doi.org/10.1090/S1088-4173-07-00148-8
- Published electronically: January 10, 2007
- PDF | Request permission
Abstract:
Degenerate submanifolds of pseudo-Riemannian manifolds are quite difficult to study because there is no preferred connection when the submanifold is not totally geodesic. For the particular case of degenerate totally umbilical hypersurfaces, we show that there are “Weyl” connections adapted to the induced structure on the hypersurface. We begin the study of these with their holonomy.References
- Maks A. Akivis and Vladislav V. Goldberg, Lightlike hypersurfaces on manifolds endowed with a conformal structure of Lorentzian signature, Acta Appl. Math. 57 (1999), no. 3, 255–285. MR 1722041, DOI 10.1023/A:1006244706787
- C. Atindogbe, J.-P. Ezin, and Joël Tossa, Pseudoinversion of degenerate metrics, Int. J. Math. Math. Sci. 55 (2003), 3479–3501. MR 2019290, DOI 10.1155/S0161171203301309
- Cyriaque Atindogbe, Jean-Pierre Ezin, and Joël Tossa, Reduction of the codimension for lightlike isotropic submanifolds, J. Geom. Phys. 42 (2002), no. 1-2, 1–11. MR 1894071, DOI 10.1016/S0393-0440(01)00027-4
- C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421–442. MR 2039644
- Krishan L. Duggal and Aurel Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its Applications, vol. 364, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1383318, DOI 10.1007/978-94-017-2089-2
- L. Bérard-Bergery and A. Ikemakhen, On the holonomy of Lorentzian manifolds, Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 27–40. MR 1216527, DOI 10.1090/pspum/054.2/1216527
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Dominic D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. MR 1787733
- Stefan Ivanov, Einstein-Weyl structures on compact conformal manifolds, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 457–462. MR 1726786, DOI 10.1093/qjmath/50.200.457
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 0424186, DOI 10.1017/CBO9780511524646
- Demir N. Kupeli, On null submanifolds in spacetimes, Geom. Dedicata 23 (1987), no. 1, 33–51. MR 886772, DOI 10.1007/BF00147389
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Abdelghani Zeghib, Remarks on Lorentz symmetric spaces, Compos. Math. 140 (2004), no. 6, 1675–1678. MR 2098408, DOI 10.1112/S0010437X04000466
- A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal. 9 (1999), no. 4, 823–854. MR 1719610, DOI 10.1007/s000390050103
Bibliographic Information
- Cyriaque Atindogbe
- Affiliation: Institut De Mathématiques et de Sciences Physiques, 01 BP 613, Porto-Novo, Bénin
- Email: atincyr@imsp-uac.org
- Lionel Berard-Bergery
- Affiliation: Institut Elie Cartan, Université Henri Poincaré, Nancy I, B.P. 239 54506 Vandœuvre-lès Nancy Cedex, France
- Email: berard@iecn.u-nancy.fr
- Received by editor(s): December 1, 2005
- Published electronically: January 10, 2007
- Additional Notes: The first author thanks the Agence Universitaire de la Francophonie (AUF) for support with a one year research grant, along with the Institut Elie Cartan (IECN, UHP-Nancy I) for research facilities during the completion of this work.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 11 (2007), 1-11
- MSC (2000): Primary 53C50, 53C05, 53C29
- DOI: https://doi.org/10.1090/S1088-4173-07-00148-8
- MathSciNet review: 2276544