On reflections in Jordan curves
HTML articles powered by AMS MathViewer
- by Ole Jacob Broch
- Conform. Geom. Dyn. 11 (2007), 12-28
- DOI: https://doi.org/10.1090/S1088-4173-07-00158-0
- Published electronically: March 1, 2007
- PDF | Request permission
Abstract:
A purely geometric method for constructing reflections in Jordan curves on the Riemann sphere based on hyperbolic geodesics is introduced. It is then possible to investigate the relations between the geometry of a Jordan domain $D$ and the properties of the reflection by studying properties of hyperbolic geodesics. This idea is used to characterize unbounded Jordan John domains in terms of reflections satisfying a kind of Lipschitz condition.References
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- O. J. Broch, Geometry of John disks, Dr. scient.-avhandling, Doctoral Theses at NTNU 2005:21, NTNU, 2005.
- Ole Jacob Broch, Extension of internally bilipschitz maps in John disks, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 13–30. MR 2210105
- Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2, 23–48. MR 857678, DOI 10.1007/BF02392590
- Clifford J. Earle and Subhashis Nag, Conformally natural reflections in Jordan curves with applications to Teichmüller spaces, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 179–194. MR 955840, DOI 10.1007/978-1-4613-9611-6_{1}3
- Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR 1730906, DOI 10.1090/surv/076
- Frederick W. Gehring, Characteristic properties of quasidisks, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 84, Presses de l’Université de Montréal, Montreal, Que., 1982. MR 674294
- F. W. Gehring and K. Hag, Remarks on uniform and quasiconformal extension domains, Complex Variables Theory Appl. 9 (1987), no. 2-3, 175–188. MR 923218, DOI 10.1080/17476938708814261
- F. W. Gehring and K. Hag, Reflections on reflections in quasidisks, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 81–90. MR 1886615
- Frederick W. Gehring and Kari Hag, Sewing homeomorphisms and quasidisks, Comput. Methods Funct. Theory 3 (2003), no. 1-2, [On table of contents: 2004], 143–150. MR 2082011, DOI 10.1007/BF03321031
- F. W. Gehring, K. Hag, and O. Martio, Quasihyperbolic geodesics in John domains, Math. Scand. 65 (1989), no. 1, 75–92. MR 1051825, DOI 10.7146/math.scand.a-12267
- F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353–361. MR 148884
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- Kari Hag, What is a disk?, Quasiconformal geometry and dynamics (Lublin, 1996) Banach Center Publ., vol. 48, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 43–53. MR 1709973
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Kiwon Kim, Relations between certain domains in the complex plane and polynomial approximation in the domains, Bull. Korean Math. Soc. 39 (2002), no. 4, 687–704. MR 1939567, DOI 10.4134/BKMS.2002.39.4.687
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Jason Miller, Sector reflections in the plane, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 219–225. MR 2173362
- Raimo Näkki and Jussi Väisälä, John disks, Exposition. Math. 9 (1991), no. 1, 3–43. MR 1101948
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- K. Ryu, Properties of John disks, Ph.D. thesis, University of Michigan, 1991.
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- P. Tukia and J. Väisälä, Quasiconformal extension from dimension $n$ to $n+1$, Ann. of Math. (2) 115 (1982), no. 2, 331–348. MR 647809, DOI 10.2307/1971394
Bibliographic Information
- Ole Jacob Broch
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Email: olejacb@math.ntnu.no
- Received by editor(s): August 24, 2006
- Published electronically: March 1, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 11 (2007), 12-28
- MSC (2000): Primary 30C20; Secondary 30C99
- DOI: https://doi.org/10.1090/S1088-4173-07-00158-0
- MathSciNet review: 2295995