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PINCHING HOLOMORPHIC CORRESPONDENCES

SHAUN BULLETT AND PETER HAÏSSINSKY

Abstract. For certain classes of holomorphic correspondences which are mat-
ings between Kleinian groups and polynomials, we prove the existence of pinch-
ing deformations, analogous to Maskit’s deformations of Kleinian groups which
pinch loxodromic elements to parabolic elements. We apply our results to es-
tablish the existence of matings between quadratic maps and the modular
group, for a large class of quadratic maps, and of matings between the qua-
dratic map z → z2 and circle-packing representations of the free product
C2 ∗ C3 of cyclic groups of order 2 and 3.

1. Introduction

It is a well-known consequence of the simultaneous uniformisation theorem of
Bers [2] that given two abstractly isomorphic Fuchsian groups G1 ⊂ PSL2(R) and
G2 ⊂ PSL2(R), acting on the upper and lower complex half-planes respectively,
each having limit set R̂ = R ∪∞, and such that the action of G1 on R̂ is topolog-
ically conjugate to that of G2, the actions of G1 and G2 can be mated to obtain
a quasifuchsian Kleinian group G ⊂ PSL2(C). This mating is a group which is
abstractly isomorphic to both G1 and G2, it has limit set Λ(G) a simple closed
(fractal) curve, and the actions of G on the two components of Ω = Ĉ − Λ are
conformally conjugate to those of G1 on U and G2 on L.

It is also well known that given two polynomial maps P and Q of the same degree
n, in appropriate circumstances one can find a rational map R which realises a
mating between the actions of P and Q on their filled Julia sets, in a precise sense
as defined for example in [13]. A necessary condition for a mating between two
quadratic polynomials P : z → z2 + c and Q : z → z2 + c′ to exist is that c and
c′ should not belong to conjugate limbs of the connectivity locus (the Mandelbrot
Set) in parameter space: this was first shown also to be a sufficient condition in
the case that P and Q are postcritically finite [19, 20], and subsequently for much
more general classes of P and Q [13].

In [5] the first examples of holomorphic correspondences realising matings be-
tween Fuchsian groups and polynomials were presented. Holomorphic correspon-
dences on the Riemann sphere are multi-valued maps f : z → w defined by poly-
nomial equations p(z, w) = 0. Examples of holomorphic correspondences are those
defined by a union of the graphs of some finite set of Möbius transformations, or
by the graph of a rational map (or its inverse). We say that such a correspondence
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has bidegree (m : n) if a generic point z has n images w and a generic point w has
m inverse images z.

Definition 1.1. Let qc : z → z2 + c be a quadratic map with connected filled Julia
set K(qc). A holomorphic correspondence f : z → w of bidegree (2 : 2) is called a
mating between qc and the modular group PSL2(Z) if:

(a) there exists a completely invariant open simply-connected region Ω ⊂ Ĉ and
a conformal bijection h from Ω to the upper half-plane conjugating the two branches
of f |Ω to the pair of generators z → z + 1, z → z/(z + 1) of PSL2(Z);

(b) the complement of Ω is the union of two closed sets Λ− and Λ+, which
intersect in a single point and are equipped with homeomorphisms h± : Λ± →
K(qc), conformal on interiors, respectively conjugating f restricted to Λ− as domain
and codomain to qc on K(qc), and conjugating f restricted to Λ+ as domain and
codomain to q−1

c on K(qc).

In [5] the one parameter family of correspondences
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was shown to contain examples of matings between quadratic maps and the modular
group. The following conjecture is implicit in the discussion in Sections 1 and 6 of
that paper.

Conjecture 1.2. The family (1.1) of (2 : 2) correspondences contains matings
between PSL2(Z) and every quadratic polynomial having a connected Julia set,
that is to say every z → z2 + c with c ∈ M, the Mandelbrot set.

Supporting evidence was provided by proofs for particular examples and numer-
ical experiments suggesting the resemblance between the space of matings and the
Mandelbrot set. However difficulties in adapting the theory of polynomial-like maps
[9] to the setting of pinched polynomial-like maps prevented a proof.

A different question turned out to be easier to answer. The modular group may
be considered as a representation of the free product C2 ∗ C3 of cyclic groups, of
orders two and three, in PSL2(C). Up to conjugacy there is a one parameter family
of such representations and in the parameter space there is a set D, homeomorphic
to a once-punctured closed disc, for which the representation is discrete and faithful.
The modular group corresponds to a particular boundary point of D. Let r be any
representation of C2 ∗ C3 corresponding to a parameter value in the interior D◦ of
D. The ordinary set Ω(r) of the Kleinian group defined by such a representation r
is connected and the limit set Λ(r) is a Cantor set. In [4] the notion of a mating
between such a representation r of C2∗C3 and a quadratic polynomial qc : z → z2+c
was introduced: Λ− and Λ+ are now disjoint, and their complement Ω is canonically
associated to Ω(r) (see Section 2.2). By the application of polynomial-like mapping
theory, the following analogue of Conjecture 1.2 was proved in [4].

Theorem 1.3. For every quadratic map qc : z → z2 + c with c ∈ M and every
faithful discrete representation r of C2 ∗C3 in PSL2(C) having connected ordinary
set, there exists a polynomial relation p(z, w) = 0 defining a (2 : 2) correspondence
which is a mating between qc and r.

An outline of the proof of Theorem 1.3 is presented in Section 2.2, as a prelude
to applying pinching techniques to the matings it shows to exist.
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We describe an involution J on Ĉ as compatible with a mating f if (J ◦ f) ∪ I
Ĉ

is an equivalence relation, where I
Ĉ

denotes the identity map on Ĉ and (J ◦ f)∪ I
Ĉ

denotes the 3 : 3 correspondence defined by the algebraic curve

p(z, J(w))(z − w) = 0.

(Here p(z, w) = 0 is the curve defining f .)

Proposition 1.4. Every mating with a compatible involution is conjugate to a
correspondence in the following two parameter family (also considered in [5]):
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As we shall see, the matings constructed in [4] have compatible involutions, so
they have representatives in the family (1.2), a fact observed in [4] but for which
Proposition 1.4 (proved in Section 2) provides a more conceptual setting.

The basic idea of pinching can be seen in the process by which the modular
group can be obtained from any chosen standard representation r∗ of C2 ∗C3 lying
in the interior of D, that is to say a faithful discrete representation with connected
ordinary set Ω(r∗) (and therefore limit set a Cantor set). We first recall that each
Kleinian representation of C2 ∗ C3 comes equipped with a canonical involution χ
which conjugates the generators σ ∈ C2 and ρ ∈ C3 to their inverses (see Section
2.1); we let G denote the group 〈χ, σ, ρ〉. For each rational number p/q there is an
arc δp/q on the orbit space Σ = Ω(r∗)/G which lifts to simple closed geodesic δ̃p/q

of winding number p/q on a certain torus Σ̃ double-covering Σ (see Lemma 3.1 in
Section 3.1 for details). The arc δp/q lifts to an arc αp/q on Ω(r∗) together with its
translates under G. This arc αp/q is precisely 〈〈g〉〉-invariant for any loxodromic
element g ∈ G which stabilises it. (Here 〈〈g〉〉 denotes the maximal elementary
subgroup of G containing g, and saying that an arc α is precisely 〈〈g〉〉-invariant
means that 〈〈g〉〉α = α and h(α) ∩ α = ∅ for all h ∈ G not in 〈〈g〉〉.) In this
situation Maskit’s Theorem [15] states that the representation of G in PSL2(C)
can be deformed to one in which αp/q and its translates under G are pinched to
points and g becomes parabolic. We deduce that we may pinch δ0, and hence
its lift α0, to a point, thereby deforming the representation r∗ of C2 ∗ C3 to the
representation PSL2(Z), which lies on the boundary of the deformation space D.
Similarly for p/q �= 0 we may pinch δp/q to a point and so deform the representation
r∗ to a faithful discrete representation which we denote rp/2q. This has ordinary
set a disjoint union of a countable infinity of open round discs, and limit set a
circle-packing. The representation rp/2q depends only on the value of p/2q mod
2: pinching δ(2nq+p)/q in place of δp/q amounts to approaching the same limit
representation rp/2q but by a non-isotopic path in D. We remark that by a deep
result of McMullen [17] the representations rp/2q are dense in the boundary of D.

Recently, Häıssinsky [12], Cui [7], and Häıssinsky and Tan Lei [13] proved anal-
ogous results to Maskit’s in the context of rational maps, showing that, under
appropriate hypotheses, given a rational map R and an R-invariant union of arcs
joining attracting to repelling cycles, one can continuously deform the map in such
a way that the arcs, and their pre-images, are pinched to points and the cycles
become parabolic.

In this paper, we adapt the techniques of [12] and [13] to apply them to the holo-
morphic correspondences constructed in [4]. In Section 3, for any correspondence
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p0(z, w) = 0 which is a mating between r∗ and qc, and for any rational number p/q,
we identify an arc γp/q such that the grand orbit of γp/q under the correspondence
is a union of infinitely many disjoint copies of γp/q (or of copies of a quotient of γp/q

by an involution), and such that pinching each connected component of this union
to a point corresponds to deforming the representation r∗ to rp/2q. We describe the
pinching process formally as follows.

Definition 1.5. A convergent pinching deformation for γp/q is a family of quasi-
conformal maps (ϕt)0≤t<1 of the Riemann sphere such that the conjugate corre-
spondences pt defined by

pt(z, w) = p0(ϕ−1
t (z), ϕ−1

t (w))

are holomorphic and satisfy the following:
• (pt, ϕt) are uniformly convergent to a pair (p1, ϕ1) as t tends to 1,
• the non-trivial fibres of ϕ1 are exactly the closure of the connected compo-

nents of the orbit of γp/q.

There are two technical conditions that we require the quadratic map qc to satisfy
in order to apply the techniques of [13] to γ0:

(i) if the critical point 0 of qc is recurrent, the β-fixed point of qc is not in the
ω-limit set of 0;

(ii) qc is weakly hyperbolic; that is, there are constants r > 0 and δ < ∞ such
that, for all z ∈ Jq \{preparabolic points}, there is a subsequence of iterates (qnk)k

such that
deg(Wk(z)

qnk

−→ D(qnk(z), r)) ≤ δ

where Wk(z) is the connected component of q−nk(D(qnk(z), r)) containing z.
In Section 4 we prove:

Theorem 1.6. Let p0(z, w) be a mating between the representation r∗ and qc, where
qc satisfies conditions (i) and (ii) above. Then there exists a pinching deformation
of p0 such that (pt)0≤t<1 converges uniformly to a mating p1 between PSL2(Z)
and qc.

Corollary 1.7. Conjecture 1.2 is true for all quadratic maps qc which satisfy con-
ditions (i) and (ii).

The class of weakly hyperbolic quadratic maps is quite large: for example, it
contains all quadratic maps which satisfy the Collet-Eckmann condition [18], and
those which contain parabolic points.

We next investigate pinching γp/q, for p/q �= 0. In Section 3.2, we define the
notion of a mating between the circle-packing representation rp/2q of C2 ∗ C3 and
qc. This generalises our earlier definition of a mating between PSL2(Z) and qc,
replacing K(qc) by a certain identification space K(qc)/∼p/q and replacing the
condition that Λ+ ∩Λ− be a point by the condition that it consists of q points (the
p/q Sturmian orbit on the boundary of K(qc)). We show that a mating between
rp/2q and qc depends only on p/q mod 1. To avoid technical difficulties, we restrict
attention to the special case that the quadratic map is q0 : z → z2. Using the
techniques of [12], we prove the following:

Theorem 1.8. Let p0(z, w) be a mating between the representation r∗ and q0, and
let p/q be any rational. Then there exists a pinching deformation of p0 such that
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Figure 1. A mating of a representation of C2 ∗C3 with a Douady
rabbit (and zoom). The arc γ0 and its images are shown. Pinching
these gives a mating of PSL2(Z) with the rabbit, by Theorem 1.6.

(pt)0≤t<1 converges uniformly to a mating p1 between the circle-packing represen-
tation rp/2q of C2 ∗ C3 in PSL2(C) and q0.

The following is the natural generalisation of Conjecture 1.2.

Conjecture 1.9. For every 0 ≤ p/q < 1, the family (1.2) of (2 : 2) correspondences
contains matings between the circle-packing representation rp/2q and every quadratic
polynomial qc which has c ∈ M\M1−p/q, where M1−p/q denotes the (1−p/q)-limb
of the Mandelbrot set M.

The condition that c does not lie in M1−p/q is necessary for elementary topo-
logical reasons. One might hope to generalise the techniques of the present paper
to prove Conjecture 1.9 in the case that qc satisfies conditions (i) and (ii) of the
hypotheses of Theorem 1.6, but the technical details could be formidable.

Warning. As will already be apparent, certain of the constructions and results in
this article depend on p/q ∈ Q, certain depend only on p/q mod 1 (the class of p/q
in Q/Z), and certain on p/q mod 2. We shall try to make the dependence clear in
each case, but briefly the situation may be summed up as follows. A circle-packing
representation rp/2q of C2 ∗ C3 depends on p/q mod 2 but the route to it (in the
moduli space D) given by pinching δp/q depends on p/q ∈ Q. A mating between
rp/2q of C2 ∗ C3 and qc depends only on p/q mod 1, but again the route to it (in
mating space) given by pinching γp/q depends on p/q ∈ Q.
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2. Matings between quadratic maps and representations of C2 ∗ C3

We define what we mean by matings between quadratic maps and representations
of C2 ∗ C3 in PSL2(C) which lie in Do, we recall the main ideas of the proof [4] of
Theorem 1.3, we prove Proposition 1.4, and we present a group-theoretic description
of the ‘ordinary set’ Ω(f) of a mating.

2.1. Faithful discrete representations with connected ordinary sets. Up
to conjugacy, each representation r of C2 ∗C3 in PSL2(C) is determined by a single
complex parameter, the cross-ratio between the fixed points on Ĉ of the action of
the generator σ of C2 and those of the generator ρ of C3. Such a representation
comes equipped with a (unique) involution χ which exchanges the two fixed points
of σ and also those of ρ, so that χσ = σχ and χρ = ρ−1χ. On the Poincaré 3-ball,
χ is simply rotation through π around the common perpendicular to the axes of σ
and ρ. Write G for the group 〈σ, ρ, χ〉, and note that it has ordinary set Ω(G) the
same as that of 〈σ, ρ〉.

The faithful discrete actions r : C2 ∗C3 ⊂ PSL2(C) with connected ordinary set
Ω(G) form a single quasiconformal conjugacy class, the class of representations for
which one can find simply-connected fundamental domains for σ and ρ with interiors
together covering the whole Riemann sphere (the conditions of the simplest form
of the Klein Combination Theorem are satisfied) [14]. Such fundamental domains
may be constructed as illustrated in Figure 2.

Here P and P ′ are the fixed points of ρ, Q and Q′ are the fixed points of σ, R is a
fixed point of (the involution) χρ and S and S′ are the fixed points of χσ. The lines
l, m and n, joining R to S, Q to S and R to P , are chosen such that they are smooth
and remain non-intersecting in the quotient orbifold Ω(G)/G. The region bounded
by n, ρn, χn and χρn is a fundamental domain for ρ, and the region exterior to
the loop made up of m, σm, χm and χσm is a fundamental domain for σ. The
intersection of these two regions is a fundamental domain for the (faithful) action
of C2 ∗C3 on Ω(G), and the half DG of this intersection bounded by n, l, m, σm, χl
and ρn is a fundamental domain for the action of G. The union of all translates
of DG under elements of C2 ∗ C3 is a topological disc D which is a fundamental
domain for the action of χ on Ω(G). The complement Λ(G) of Ω(G) = D ∪ χ(D)
in Ĉ is a Cantor set.

The orbifold Ω(G)/G is a sphere Σ, which has a complex structure with four cone
points, which we may also label P, Q, R, S, where P has angle 2π/3 and Q, R, S
each have angle π. For a given representation of C2 ∗ C3, a set of lines l, m, n
as in Figure 2 descend to an isotopy class of non-intersecting paths joining the
corresponding cone points in Σ. By considering the choices we may make of the
various labels and lines in Figure 2, we can obtain a description of D̃0, the universal
cover of the moduli space D0.

Lemma 2.1. There is a homeomorphism Φ between Do and the space S of spheres
Σ having a complex structure with four marked cone points P, Q, R, S where P
has angle 2π/3 and Q, R, S each have angle π. This homeomorphism Φ lifts to a
homeomorphism Φ̃ between D̃o and the space S̃ of spheres Σ ∈ S marked with an
isotopy class of non-intersecting paths PR, RS and SQ.

Proof. For r ∈ Do define Φ(r) to be the orbifold Ω(G)/G, where G = 〈σ, ρ, χ〉
is the subgroup of PSL2(C) corresponding to the representation r. Clearly Φ is
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Figure 2. A fundamental domain DG for the group G = 〈σ, ρ, χ〉.

continuous as Do is endowed with the topology induced by its parametrisation by
the cross-ratio (Q, Q′; P, P ′). To define an inverse to Φ, observe that given any
Σ ∈ S, we may obtain a representation r by regarding Σ as a quasiconformal
deformation of the orbifold corresponding to r∗, lifting the corresponding ellipse
field to Ĉ, and applying the Measurable Riemann Mapping Theorem.

To lift Φ to a homeomorphism Φ̃ we have to consider markings. Note that given
a representation of C2∗C3 which lies in Do, there is only one choice for which of the
pair P, P ′ (in Figure 2) to label P , namely the fixed point of ρ around which the
rotation is anti-clockwise. There is also just one choice (up to isotopy) for the arc
n. The labels Q and Q′ are interchangeable (provided that we also interchange the
labels S and S′), but once a choice has been made for Q the arc m is determined,
and even if the labels Q and Q′ are exchanged, the arc QS in the orbifold Σ is
unchanged up to isotopy. This just leaves us a choice of the arc l in Figure 2. We
can alter l to wind an extra n times around the central ‘hole’ for any integer n,
or n + 1/2 times if we switch the labels Q and Q′. Changing the winding number
of l corresponds to choosing a different isotopy class of paths between the points
labelled R and S in the orbifold Σ. �

Let tα denote the automorphism of D̃o corresponding to turning the internal
boundary of Figure 2 through an angle 2πα. Note that t1/4 moves the pair of
points labelled Q, Q′ to the pair labelled S, S′ and vice versa. Let ι : Do → Do

denote the involution obtained by replacing the generating pair {σ, ρ} of C2 ∗ C3

by {σ′, ρ}, where σ′ = χσ. This corresponds to composing the representation with
an outer automorphism of C2 ∗ C3. The following result is now self-evident.

Lemma 2.2. The automorphism t1/4 : D̃o → D̃o covers ι : Do → Do, and t1/2

generates the group of covering transformations of D̃o → Do. �
2.2. Matings between qc and r ∈ Do. As in the previous subsection, G denotes
the group 〈σ, ρ, χ〉.
Definition 2.3. A (2 : 2) holomorphic correspondence f : z → w is called a mating
between a faithful discrete representation r of C2∗C3 in PSL2(C) having connected
ordinary set Ω(G) and a polynomial qc : z → z2 + c having connected filled Julia
set K(qc), if the Riemann sphere Ĉ is the disjoint union of a connected open set
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Figure 3. The set DG ∪ ρ(DG) ∪ ρ−1(DG) and its quotient the
annulus B.

Ω(f) and a closed set Λ(f) made up of two components, Λ+(f) and Λ−(f) such
that each of Ω(f) and Λ(f) is completely invariant under f and:

(a) the action of f on Ω(f) is discontinuous and there is a conformal bijection
between the grand orbit space Ω(f)/f and Ω(G)/G;

(b) there is a quasiconformal homeomorphism defined from a neighbourhood of
Λ−(f) onto a neighbourhood of K(qc) in C, which realises a hybrid equivalence,
conjugating f to qc. Similarly, there is a hybrid equivalence between (f−1, Λ+(f))
and (qc, K(qc)), this time conjugating f−1 to qc.

(See [9] for the definition of the term ‘hybrid equivalence’.)
The construction of a holomorphic correspondence which realises a mating be-

tween given qc and r proceeds as follows (see [4] for more details).
We first associate an annulus A to qc : z → z2 + c. There is a holomorphic

conjugacy (the Böttcher coordinate) from z → z2 to qc on a neighbourhood of ∞,
fixing the point ∞ and tangent to the identity map there [8]. An equipotential
for qc is the image of a circle {Re2πit : 0 ≤ t < 1} under this conjugacy. It is a
smooth Jordan curve parameterized by external angle t. The region bounded by
such an equipotential is a simply-connected domain V , mapped 2 : 1 by qc onto a
larger domain U ⊃ V which also has boundary an equipotential parametrised by
external angle. Let A denote the annulus U − V , and denote its inner and outer
boundaries by ∂1A and ∂2A, respectively. The map qc sends ∂1A two-to-one onto
∂2A. There is an involution i : z → −z on V sending each z ∈ V to the other point
which has the same image in U under qc, and there are many choices possible of an
orientation-reversing smooth involution j on ∂2A, a canonical choice being given
by t → 1 − t on external angles.

The next ingredient is an annulus B associated to r. Recall the fundamental
domain DG constructed above for the group G = 〈σ, ρ, χ〉 and illustrated in Fig-
ure 2. Let B denote the annulus consisting of the three copies DG ∪ ρDG ∪ ρ−1DG

of DG, with the boundary identifications (induced by χ) indicated in Figure 3. The
rotations ρ and ρ−1 mapping DG ∪ ρDG ∪ ρ−1DG to itself descend to a 2 : 2 corre-
spondence g on B, mapping each z ∈ B to the pair {ρz, ρ−1z} (or rather to their
equivalence classes under the action of χ). The set DG descends to a ‘fundamental
domain’ for the action of g on B. The boundary of B is divided into three segments
(two inner and one outer, Figure 3), each of which is mapped to the other two by
g. Thus when its domain is restricted to the inner boundary ∂1B, and its range
is restricted to the outer boundary ∂2B, the correspondence g defines a two-to-one
map. When restricted to a correspondence from the inner boundary to itself, g
defines a (fixed point free) bijection. Moreover, the involution σ descends to an
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involution (which we also denote σ) on the outer boundary ∂2B of B, having fixed
points Q and S.

Lemma 2.4. There exists a quasiconformal homeomorphism h from A to B which
restricts to a smooth homeomorphism from ∂A to ∂B conjugating the boundary
maps (qc : ∂1A → ∂2A, j : ∂2A → ∂2A) to the boundary maps (σ ◦ g : ∂1B →
∂2B, σ : ∂2B → ∂2B).

This lemma is proved [4] by applying standard techniques of Ahlfors and Bers.
Now to construct a mating between qc and r, first glue together U and a second
copy U ′ of U , via the boundary involution j, to obtain a sphere U ∪ U ′, equipped
with an involution (also denoted j) exchanging U with U ′ and restricting to the
original j on the common boundary. Inside U ′ is a simply-connected subdomain
V ′ corresponding to V ⊂ U . Let q′c = j ◦ qc ◦ j : V ′ → U ′ denote the quadratic map
corresponding to qc : V → U and A′ denote the annulus U ′ − V ′. To define a 2 : 2
topological correspondence f on U ∪ U ′ we fit together:

• qc : V → U (a 2 : 1 correspondence);
• (q′c)

−1 = j ◦ q−1
c ◦ j : U ′ → V ′ (a 1 : 2 correspondence);

• j ◦ i : V → V ′ (a 1 : 1 correspondence), and
• j ◦ g : A → A′ (a 2 : 2 correspondence),

where g : A → A is the 2 : 2 correspondence constructed earlier. Now define an
ellipse field on A by using Lemma 2.4 to transport the standard complex structure
from the annulus B. Using j, extend this ellipse field to A′, and pulling back via
q−1
c and q′−1

c , extend it to an ellipse field on the whole of Ĉ−(K(qc)∪K(q′c)), which
transforms equivariantly under the action of the 2 : 2 correspondence f . Extend
this ellipse field to the whole of Ĉ by using the standard complex structure on
K(qc)∪K(q′c). By applying the Measurable Riemann Mapping Theorem we obtain
a complex structure respected by f , completing our outline proof of Theorem 1.3.

For any mating f constructed by the method of the proof above, the 3 : 3
correspondence (j ◦f)∪ I

Ĉ
sends each z ∈ V to the triple of points {z, i(z), jqc(z)},

each z ∈ A to the triple {z, g(z)} (recall that g is 2 : 2 so g(z) contains two points),
and each z ∈ U ′ to the triple {z, q−1

c j(z)}. It is easily checked that each of these
triples is the grand orbit under (j ◦ f) ∪ I

Ĉ
of any one of its elements, in other

words the 3 : 3 correspondence is an equivalence relation. The involution j is
therefore compatible with the mating f in the sense defined in Section 1. To show
that f is conjugate to a correspondence in the family (1.2) it now only remains to
prove Proposition 1.4. But a holomorphic correspondence which is an equivalence
relation is necessarily the covering correspondence of a rational map, and so there
is a rational map Q of degree three such that (J ◦ f) ∪ I

Ĉ
= CovQ where

CovQ : z → w ⇔ Q(w) − Q(z) = 0.

We deduce that f = J ◦ CovQ
0 , where

CovQ
0 : z → w ⇔ Q(w) − Q(z)

w − z
= 0.
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P

Figure 4. A Fuchsian representation of Γ. Here P, Q, R and S
are the fixed points of ρ, σ, τ and σρτ . The heavy lines indicate
the boundary of DΓ1 .

Counting singular points of f now tells us that Q has one double and two single
critical points, and that therefore up to pre- and post-compositions by Möbius
transformations Q is the polynomial Q(z) = z3−3z. It follows that up to conjugacy
we may write f in the form

z → w ⇔ (Jw)2 + (Jw)z + z2 = 3.

It is easy to see that if we apply a further conjugacy to transform J to the involution
J(z) = −z, the equation defining the correspondence f becomes a member of the
family (1.2). This completes the proof of Proposition 1.4.

2.3. A group-theoretic description of Ω for a mating. We shall be pinching
unions of arcs in Ω(f) which are lifts of simple closed curves in the grand orbit
space Ω(f)/f , where f is one of the matings provided by Theorem 1.3. With a
view to describing these arcs, we examine the structure of Ω(f) and its relationship
with Ω(G). Our first step will be to find a Fuchsian uniformisation for Ω(G)/G.

Let Γ denote the abstract group 〈σ, ρ, τ : σ2 = ρ3 = τ2 = (σρτ )2 = 1〉.
Let F denote the moduli space of conjugacy classes of faithful discrete co-

compact representations of Γ in PSL2(R) (recall that a Fuchsian group is said
to be co-compact if the quotient of the Poincaré disc by its action is compact). An
example of a representation of Γ which lies in F is illustrated in Figure 4. Let F0

denote the path-component of F containing the representation illustrated. Thus a
faithful discrete representation of Γ lies in F0 if and only if there is a fundamental
domain DΓ for Γ isotopic to that illustrated in Figure 4, with boundary passing
through the fixed points of the corresponding elements of Γ, in the same order but
with the intervening boundary segments no longer necessarily geodesic.

Let σ′ = ρτσ. Then σ′, ρ and τ together generate Γ = 〈σ, ρ, τ 〉, and satisfy the
same relations. Changing to the new generating set amounts to applying an (outer)
automorphism, which we denote β, to Γ. Let ψ be the automorphism of F0 induced
by composing the representation γ → PSL2(R) with β and replacing the boundary
of DΓ in Figure 3 with that given by moving S up to Q (the fixed point of σ′ρτ ),
and Q up to σ(S) (the fixed point of σ′), but keeping P and R unchanged.
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Recall our description in Section 2.1 of the universal cover D̃o of the space Do of
conjugacy classes of faithful discrete representations of C2 ∗C3 in PSL2(C) having
connected ordinary set.

Proposition 2.5. There is a homeomorphism Ψ : D̃o → F0, which carries t1/4 to
ψ and hence induces homeomorphisms:

(i) Do → F0/〈ψ2〉;
(ii) Do/ι → F0/〈ψ〉.

Proof. By Lemma 2.1, a point of D̃o corresponds to an element of S̃, that is to say
a sphere equipped with a complex structure having cone points P of angle 2π/3,
and Q, R and S all of angle π, together with an isotopy class of paths PR, RS and
SQ. Obviously it suffices to define a homeomorphism between S̃ and F0.

To do this we uniformise each marked orbifold Σ ∈ S̃ as a quotient of the
Poincaré disc ∆ by isometries. The marked arcs on Σ lift to a union of arcs, tiling
∆ by translates of a polygon isotopic to that labelled DΓ in Figure 4. The group
of covering transformations of the projection from ∆ to Σ is isomorphic to Γ by
Poincaré’s polygon theorem [1]. Conversely, given a faithful discrete representation
of Γ lying in F0, its quotient orbifold Σ is an element of S̃. Thus we have a bijection
S̃ → F0 which, by construction, is continuous and has a continuous inverse. Since
t1/4 and ψ have identical effects on Σ, our composite homeomorphism Ψ : D̃o → F0

carries t1/4 to ψ, and the assertions (i) and (ii) are immediate corollaries. �

Remark 2.6. The question of finding explicit formulae for bijections between mod-
uli spaces of representations of Kleinian groups and Fuchsian groups, such as the
bijection provided by Proposition 2.5, is in general highly non-trivial, a classical
example being to relate each Schottky group to a Fuchsian group representing the
same surface.

Now let Γ1 ⊂ Γ be the subgroup generated by ρτ (which has infinite order),
the involution ρ−1τρ, and all involutions of the form Wρ−1τρW−1, where W runs
through those words in σ and ρ which have rightmost letter σ. Then Γ1 has as
fundamental domain the region DΓ1 bounded by heavy lines in Figure 4. Note that
DΓ1/Γ1 is a topological cylinder, the top edge of the region DΓ1 in Figure 4 being
identified with the bottom edge, each of the arcs on the left-hand edge being folded
in onto an interval, and each of the arcs on the right-hand edge also being folded
in onto an interval.

Suppose f is a 2 : 2 holomorphic correspondence which is a mating, constructed
as in Theorem 1.3, between a faithful discrete representation of C2 ∗C3 in PSL2(C)
having connected ordinary set and a quadratic map z → z2 + c having connected
Julia set. Let Γ ⊂ PSL2(R) be the Fuchsian representation associated to it by
Proposition 2.5, and let Γ1 be the subgroup of Γ defined above.

Proposition 2.7. There is a bi-analytic homeomorphism

DΓ1/Γ1
∼= ∆/Γ1 → Ω(f)

carrying the action of the pair {σρ, σρ−1} on DΓ1/Γ1 to that of the correspondence
f on Ω(f).
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Proof. From the construction of the mating f in our outline proof of Theorem 1.3
(in Section 2.2), it is apparent that (∆, Γ1) uniformises Ω(f): the set DΓ1 ∪ ρDΓ1 ∪
ρ−1DΓ1 in Figure 4, when quotiented by the boundary identifications induced by
Γ1, becomes the annulus B of Figure 3, and the maps σρ and σρ−1 become the two
‘branches’ of the correspondence f on Ω(f). �

Corollary 2.8. A mating between qc and r ∈ Do constructed by the method of
Theorem 1.3 is canonically isomorphic to a mating between qc and ι(r).

Proof. The outer automorphism β defined by replacing the generator σ of Γ by σ′ =
ρτσ stabilises Γ1, and the correspondence induced by {σρ, σρ−1} on ∆/Γ1 is the
same as that induced by {σ′ρ, σ′ρ−1}, since σ′ρ = ρτσρ and σ′ρ−1 = ρτσρ−1. �

Remark 2.9. The idea of regarding Ω(f) as a quotient of ∆ by an infinitely generated
Fuchsian group is originally due to Chris Penrose.

Remark 2.10. We can recover the action of the Kleinian group G = 〈σ, ρ, χ〉 on Ω(G)
from the action of the corresponding Fuchsian group Γ = 〈σ, ρ, τ 〉 on ∆, as follows.
Take the polygon DΓ2 = DΓ1 ∪ ρτ (DΓ1) formed by two copies of DΓ1 , one above
the other, identify the top and bottom edges of this polygon to form a cylinder,
then fold and glue the left-hand edge together and fold and glue the right-hand
edge together, to form a sphere. The quotient DΓ2/∼, which can also be described
as an orbit space ∆/Γ2 for an appropriate infinitely generated subgroup Γ2 ⊂ Γ,
is conformally equivalent to Ω(G). Indeed Γ2

∼= π1(Ω(G)), and the projection
∆ → ∆/Γ2 is the universal cover for Ω(G). Under the bijection from DΓ2/ ∼ to
Ω(G) the ends of DΓ2 (the cusps) become the points of the limit set Λ(G) of the
action of the Kleinian group G on Ĉ.

3. The pinching deformation

3.1. The arcs to be pinched. To describe the arcs that we shall pinch later, we
first fix a standard faithful discrete representation r∗ of C2 ∗ C3 having connected
ordinary set, and a path l from a fixed point R of χρ to a fixed point S of χσ (so
R and S are as illustrated in Figure 2). For convenience we may choose r∗ and l so
that the corresponding group Γ has the reflection symmetry in the horizontal axis
apparent in Figure 4. Now consider the double cover Σ̃ of the orbifold Σ ramified
at all four cone points. This is a torus, with a single cone point P of angle 4π/3,
represented by the central hexagon DΓ ∪ σDΓ illustrated in Figure 4, with the top
edge identified with the bottom edge, and the left-hand edge identified with the
right-hand edge. While Σ̃ is not itself a quotient of the unit disc ∆ by a subgroup
of PSL2(C) (since the cone point is not of angle 2π/n), nevertheless we may equip
Σ̃ with the metric induced by the restriction of the hyperbolic metric on ∆ to the
hexagon DΓ ∪ σDΓ. The involution σ (on ∆) induces an involution σ̃ on Σ̃ such
that Σ̃/σ̃ = Σ.

Lemma 3.1. For each rational number p/q there is a geodesic arc δp/q in Σ which
has end points two of the three cone points of angle π, which misses the other cone
point of angle π and the cone point of angle 2π/3, and which has lift δ̃p/q to Σ̃ a
simple closed geodesic of winding number p/q.

Proof. For each such p/q (in lowest terms), there is a simple closed curve of winding
number p/q on the torus Σ̃, passing through (i) the cone points Q and S if q is
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SR
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Figure 5. The arcs δ̃p/q for p/q = 1/2, 1/3, 2/3 and 4/3, respectively.

even, (ii) the cone points Q and R if p and q are both odd, and (iii) the cone points
R and S if p is even. Examples are illustrated in Figure 5 for typical cases of each
type.

Note that when we add an even integer to p/q, the new δp/q is an arc between
the same two cone points on Σ. But when we add an odd integer, the roles of Q
and S are interchanged.

In every case the simple closed curve on Σ̃ can be chosen to be invariant under
σ̃. Since it passes through the lifts of two cone points, it descends to an arc on Σ
joining these two points. We define δp/q to be a representative of shortest length
in the isotopy class of this arc, relative to its end points and the other two cone
points on Σ. Note that there must exist such a minimal length example, as arcs
which pass through one or both of the other cone points have lengths which are
local maxima (since all the cone points have cone angle less than 2π). �

Let Ap/q denote the lift of δp/q to the cylinder (DΓ ∪ σDΓ)/Γ1 constructed by
identifying the top and bottom of the hexagon. Thus Ap/q consists of q arcs each
running from one boundary circle of this cylinder to the other. Consider the union
ΓAp/q of all lifts of δp/q. Recall that DΓ1/Γ1 is a cylinder, with ends corresponding
to ∂Λ− and ∂Λ+ (by Proposition 2.7), that the correspondence f acts on ∂Λ− as
a quotient of the doubling map, and that f−1 acts on ∂Λ+ as a quotient of the
doubling map. For simplicity of description assume that ∂Λ− is a topological circle
and the action of f on it is that of the doubling map (this is the case when the
quadratic map in the mating corresponds to a value of c in the interior of the main
cardioid of the Mandelbrot set): obvious adaptations are possible for the cases
where ∂Λ− is a proper quotient of the circle.

If we label the ends of ∂DΓ1 by binary sequences as indicated in Figure 6, then
the folding identifications induced by Γ1 impose the usual quotient from the space
of binary sequences to the unit circle, carrying the shift to the doubling map. Thus,
under our assumption that ∂Λ− is the circle, points of ∂Λ− are labelled (Figure 6)
in such a way that f−1 : ∂Λ− → ∂Λ− (a 1 : 2 correspondence) is defined by “right
shift and insert 0 or 1” according as the branch of f−1 is ρσ or ρ−1σ respectively,
and points of ∂Λ+ are labelled in such a way that f : ∂Λ+ → ∂Λ+ (also a 1 : 2
correspondence) is defined by “right shift and insert 0 or 1” according as the branch
of f is σρ or σρ−1, respectively. We adopt the usual notational convention that
a bar over a symbol (or group of symbols) indicates the infinite repetition of that
symbol (or group of symbols).
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Figure 6. The three arcs linking Λ− to Λ+ in the case p/q = 1/3
(the other images of these arcs under Γ are not shown).

Definition 3.2. An infinite sequence of 0’s and 1’s is known as Sturmian if the
binary number it represents on the circle has as its orbit under the doubling map
a sequence of points arranged in the same order around the circle as for a rigid
rotation.

One may assign a rotation number to each Sturmian sequence s, namely the
limit as n tends to infinity of the proportion of the first n digits of s which are 1’s,
or equivalently the rotation number of the rigid rotation having orbit points in the
same order as those of s. Note that such a rotation number is only defined mod 1.
For each rational p/q (mod 1) there is a unique periodic Sturmian orbit of rotation
number p/q (this was observed by Morse and Hedlund, who introduced the notion
of Sturmian sequences). We remark that the points of each periodic Sturmian orbit
O must be contained in an interval of length less than 1/2 on the circle R/Z, as
the doubling map must preserve the cyclic order of O (see [6] for more about this
and other properties of Sturmian sequences).

Example 3.3. The infinite sequences 01, 001 and 00101 are Sturmian, of rotation
numbers 1/2, 1/3 and 2/5, respectively.

Proposition 3.4. (ΓAp/q ∩DΓ1)/Γ1 contains exactly q arcs which join Λ− to Λ+.
These land on ∂Λ− at points of the unique Sturmian orbit of rotation number p/q
(mod 1) of the 2 : 1 map f : ∂Λ− → ∂Λ− and at the other end they land on ∂Λ+

at points of the unique Sturmian orbit of f−1 of rotation number p/q (mod 1).

Proof. The fact that there are exactly q arcs joining Λ− to Λ+ follows at once from
the fact that exactly q arcs in (ΓAp/q ∩ DΓ1)/Γ1 cross the equator circle of the
central cylinder (DΓ ∪ σDΓ)/Γ1 (the vertical line in the central hexagon in DΓ1).
The action of the correspondence f−1 = {ρ−1σ, ρσ} on these arcs is to map the
jth arc to the (j + p)th arc for each j, where the arcs are counted modulo q, from
the bottom of the central hexagon upwards. Thus the action of f−1 on the landing
point of the jth arc on Λ+ is to send it to the landing point of the (j + p)th arc,
for each j. Similarly f sends the jth landing point on Λ− to the (j + p)th. �
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Definition 3.5 (of the arc γp/q). For each p/q we pick as γp/q one of the q com-
ponents of (ΓAp/q ∩ DΓ1)/Γ1 which cross the equator circle of the central cylinder
and therefore join Λ− to Λ+. For definiteness, when q is odd we take γp/q to be the
component which passes through R (the fixed point of τ ) and when q is even we
take it to be the component which passes through S (the fixed point of σρτ ). We
remark that in the case p/q = 0 there is just one component crossing the vertical
symmetry line of the central hexagon, and it passes through both of these points.

In Figure 6 we illustrate γ1/3, which joins 010 ∈ Λ− to 100 ∈ Λ+, and its two
images which also join Λ− to Λ+. These join 100 ∈ Λ− to 010 ∈ Λ+, and 001 ∈ Λ−
to 001 ∈ Λ+, respectively. Arcs γ(3n+1)/3 for values of n other than 0, and their
images, join the same pairs of points in Λ− and Λ+, but wind a different number
of times around the cylinder DΓ1/Γ1.

For general rational p/q we have the following:

Algorithm 3.6. Each point in Λ− represented by a Sturmian p/q word u1 . . . uq is
joined (by γp/q or one of its images) to the point in Λ+ represented by the Sturmian
p/q word uq−1uq−2 . . . u1uq.

Proof. Both σρ and σρ−1 map the fixed point P of ρ to σP . It follows that f maps
the pair of geodesics landing on Λ− either side of 1̄ to the pair of geodesics landing
on Λ+ either side of 1̄ (Figure 6). The pair of landing points either side of 1̄ are
represented by the maximum and minimum Sturmian p/q words, Mp/q and mp/q

respectively, so the arcs landing at these points of Λ− have their opposite ends at
the points of Λ+ represented by s(mp/q) and s(Mp/q) respectively, where s denotes
left shift (i.e. ‘forget the first digit’). Since it is easily proved from the staircase
algorithm for Sturmian words [6] that the minimum word mp/q = vq . . . v1 is the
reverse of the maximum word Mp/q = v1 . . . vq, the result follows. Indeed we may
regard the q arcs joining Λ− to Λ+ as indexed by a marked digit in a bi-infinite
Sturmian word, and the action of f and f−1 on these arcs as moving the marker
left and right. �

Remark 3.7. Which two of the three cone points on Σ of cone angle π are the
end points of the arc δp/q is determined by the reflection symmetries of the bi-
infinite periodic Sturmian word of rotation number p/q mod 1. Each such word
has reflection symmetries of exactly two of four possible types: reflection at a 0,
or at a 1, or between two adjacent 0’s or 1’s. Which two types occur depends on
whether (after reduction of p/q mod 1) p is even, q is even, or p and q are both
odd. For example the bi-infinite word generated by 00101, a case where p is even,
has reflection points between the first two 0’s and at the third 0. The stabiliser of
any lift of δp/q to ∆ is an infinite dihedral group, generated by a pair of involutions
fixing adjacent lifts of cone points on the arc, and indeed isomorphic to the group
of symmetries of the bi-infinite periodic Sturmian word.

Remark 3.8. The same construction of geodesic arcs crossing the central hexagon
can be followed through for irrational slope ν in place of p/q. One then obtains
a lamination on DΓ1/Γ1, with singular leaves passing through the fixed point of ρ
and its translates. In this case the leaves crossing the hexagon join a Cantor set in
∂Λ−, the unique closed invariant Sturmian set of rotation number ν mod 1, to the
analogous Cantor set in ∂Λ+. The algorithm above also applies in this case to tell
us which points are joined to which; we omit details here.
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20/31

18/31

5/31

10/31 18/31

Λ−

5/31

10/31

20/31

9/31

9/31

Λ+

Figure 7. The Sturmian orbits of rotation number 2/5 on Λ− and
Λ+, the five arcs joining them, and the first images of these under
the correspondence and its inverse (subsequent images are not
shown).

It remains to describe the grand orbit of γp/q under the correspondence f .
We start with the special case p/q = 0. The arc γ0 is the lower boundary

component of the region DΓ1 in Figure 4. Under f this component maps to itself
and to the boundary component of DΓ1 which passes through the point σ(T ). The
grand orbit of γ0 under f is the union of all the boundary components of DΓ1 ,
and quotienting by f , or equivalently by Γ1, folds all these components (except the
original one) into “spikes”.

We now turn to general p/q. From the explicit construction of matings in Sec-
tion 2.2 it follows that the branch of f mapping Λ− to Λ+ is defined as follows:
given a word W in 0’s and 1’s representing a point in ∂Λ− the f -image in ∂Λ+

of that point is represented by the word φ(W ) obtained by changing the parity of
the first digit of W . It is now a straightforward computation that when q is even
the set of q arcs joining Λ− to Λ+ is mapped two-to-one by this branch to a set of
q/2 “concentric” arcs connecting pairwise the q points of Λ+ obtained by applying
the operation φ to the Sturmian p/q orbit (i.e. the points of the circle opposite to
points of the Sturmian orbit). When q is odd, the set of q arcs joining Λ− to Λ+

is mapped by this branch of f to a set of (q − 1)/2 concentric arcs together with
an innermost spike (Figure 7) which lands on Λ+ at a single point, the point oppo-
site to the middle point of the Sturmian p/q orbit. This spike arises from the fact
that for q odd the geodesic γp/q passes through the fixed point of the involution τ .
Hence its image under the branch of f we are considering passes through the fixed
point of an involution in the group Γ1. This fixed point is on the boundary of DΓ1

(indeed in Figure 4 it is the point σ(T )), and becomes the end point of a spike in
the quotient DΓ1/Γ1

∼= Ω(f).
Applying f again arbitrarily many times to our “concentric” set of q/2 arcs (or

(q−1)/2 arcs plus a spike, if q is odd), we obtain smaller and smaller copies around
∂Λ+, and applying σ to these copies we obtain similar copies around ∂Λ−, together
making up the grand orbit under f of our original set of q arcs.
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3.2. Matings between q0 and circle-packing representations of C2 ∗ C3.
We can now define precisely what we mean by the mating between q0 and rp/2q

referred to in the statement of Theorem 1.8. After the arcs which make up the
grand orbit of γp/q have been pinched, the intersection Λ+∩Λ− is no longer empty,
but consists of the p/q Sturmian orbit of the correspondence on ∂Λ+, identified
with the same orbit (in the opposite direction) on ∂Λ−. The set Ω for the pinched
correspondence has q components whose boundaries meet this orbit. These form
what we call the principal cycle of components of Ω. Together with Λ− ∩Λ+ itself,
they separate the Riemann sphere into two parts, one containing Λ− \ (Λ+ ∩ Λ−)
and the other containing Λ+\(Λ+∩Λ−). The stabiliser (under the iterated pinched
correspondence) of each of the components of the principal cycle is a group, since
these components do not contain “fold” points. Moreover, it is not hard to see that
this group is isomorphic to C2 ∗ C3.

Definition 3.9. A holomorphic correspondence is said to be a mating between rp/2q

and q0 if it is topologically conjugate to a correspondence obtained by pinching to
a point each component of the grand orbit of γp/q for a mating between r∗ and
q0, and if moreover the action of the stabiliser of each component of the principal
cycle of the correspondence is conformally conjugate to the action of PSL2(Z) on
the upper half-plane.

In a mating between q0 and rp/2q, the sets Λ+ and Λ− are no longer copies of
K(q0) (the unit disc) but are now each homeomorphic to a quotient K(q0)p/q of
K(q0) by an equivalence relation ∼p/q on ∂K(q0) (the unit circle) which may be
described as follows. Let ω′

p/q denote the points of the circle opposite to points of
the Sturmian p/q orbit ωp/q, so ωp/q and ω′

p/q are contained in disjoint intervals.
To define the relation ∼p/q we identify the ‘outermost’ pair of points of ω′

p/q, and
similarly we identify the next pair of points from the outside, and so on, folding the
points of ω′

p/q together in pairs. Similarly we identify in pairs the corresponding
inverse images of points of ω′

p/q under the doubling map, and repeat so that the
relation ∼p/q becomes invariant under this inverse.

Remark 3.10. The justification for describing the construction in the definition
as “a mating between q0 and rp/2q” is two-fold. Firstly, both the construction
and rp/2q are obtained by pinching the same simple closed curve δp/q on the same
orbifold Σ, and secondly the definition agrees with our earlier definition for a mating
between q0 and the modular group. However, when p/q /∈ Z, the most direct
relationship we know of between Ω(rp/2q) and Ω(f) for the correspondence pinched
along γp/q is that given by pinching δp/q in the Fuchsian picture of Ω(r∗), described
in Remark 2.10.

Remark 3.11. Corollary 2.8 implies that a mating between q0 and rp/2q is isomor-
phic to a mating between q0 and r(p+q)/2q. For example a mating between q0 and
r1/2 is isomorphic to one between q0 and the modular group. This example is easily
understood directly, since r1/2 is the faithful discrete representation of C2 ∗ C3 for
which the limit set is a single round circle, like PSL2(Z), but for which the gen-
erator σ of C2 acts by interchanging the two components of the complement. We
remark that rp/2q and r(p+q)/2q always have the same limit set, since the second rep-
resentation is obtained from the first by composing with an (outer) automorphism
of C2 ∗ C3.
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3.3. Invariant collar neighbourhoods of arcs. For the proofs of Theorem 1.6
and Theorem 1.8 we shall need well-behaved neighbourhoods of our arcs on which to
support the pinching deformations. We define an invariant collar neighbourhood of
an arc A joining Λ− to Λ+ to be a closed set N (A) containing A, bounded by a pair
of arcs joining the end points of A, such that under the action of f the set N (A) has
stabiliser isomorphic to the infinite dihedral group, and N (A) is precisely invariant
under the action of this stabiliser. (Strictly speaking, N (A) is not a topological
neighbourhood of A, since the end points of A are on the boundary of N (A).)

Lemma 3.12. The arc γp/q has an invariant collar neighbourhood.

Proof. A collar neighbourhood of each of the q arcs which join Λ− to Λ+ is obtained
by lifting any collar neighbourhood of the p/q geodesic δp/q on the orbifold Σ. It is
immediate from the action of σρ and σρ−1 on the lift of such a neighbourhood that
its stabiliser under the action of f is an infinite dihedral group, generated by the
appropriate branch of fq and by σ (which is a branch of f−1ff−1) composed with
a branch of whichever fr maps the σ image of the arc back to the arc. This lifted
collar neighbourhood is precisely invariant under the action of the stabiliser. �

The small copies of the q arcs have collar neighbourhoods that are the images of
the original collar neighbourhoods under appropriate branches of forward or back-
ward iterates of f . These images are each either a bijective copy, or (in the case of
a “spike”) a quotient by an involution, of one of the original collar neighbourhoods.
In the case of the arc γ0, joining the fixed points of the doubling map on ∂Λ− and
∂Λ+, all the images are such quotients.

3.4. A pinching deformation. Let us consider a correspondence p which repre-
sents the mating of a quadratic polynomial q with a faithful and discrete repre-
sentation of C2 ∗ C3 with connected ordinary set, and let f : Λ− → Λ− be the
2 : 1-branch of p. We fix the curve of rotation number p/q and consider its lifts R
(for red) to C. Thus γ = γp/q is one of the connected components of R which joins
Λ− to Λ+. Let us denote its collar neighbourhood defined above by N (γ). Then
Stab p(N (A)) is isomorphic to the infinite dihedral group. Let B− and B+ be both
components of N (A) \ γ.

We will first define an appropriate quasiconformal deformation on a model strip
and then implement it on the dynamical plane [13].

Our model space will be a closed horizontal strip on the upper half-plane. Choose
a collection of numbers 0 < Ly < Lr (the indices y, r are colours yellow and red,
respectively), and then an increasing C1-function τ : [0, 1[→ [Lr, +∞[. Let M ⊂ R

2

be the closed subset bounded by

([0, 1] × {0}) ∪ ({0} × [0, Lr]) ∪ ({1} × [0, +∞[) ∪ ({(t, τ (t)), t ∈ [0, 1[}) .

Choose vt(y) so that vt(y) = y for 0 ≤ y ≤ Ly and that (t, y) �→ (t, vt(y)) is a
C1-diffeomorphism from [0, 1] × [0, Lr] \ {(1, Lr)} → M .

We also make the following technical assumption: for any L′ < Lr, there is
t(L′) ∈]0, 1[ with t(L′) → 1 as L′ → Lr, such that for any (s, y) ∈ ]t(L′), 1]× [0, L′],
we have vs(y) = vt(L′)(y). Now on the straight strip {0 ≤ x ≤ Lr}, and for every
t ∈ [0, 1], set

P̃t(x + iy) = x + i · vt(y) .
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Figure 8. The diffeomorphism (t, y) �→ (t, vt(y)).

This map satisfies the following properties :
(1) It commutes with the translation by 1 (and by any other real number).
(2) It is the identity on the sub-strip {0 ≤ y ≤ Ly}.
(3) The coefficient of the Beltrami form

∂P̃t/∂z̄

∂P̃t/∂z

∣∣∣∣∣
x+iy

=
1 − ∂

∂y vt(y)

1 + ∂
∂y vt(y)

is continuous on (t, x + iy) ∈ [0, 1] × {0 ≤ y ≤ Lr}, whose norm is locally
uniformly bounded from 1 if (t, y) �= (1, Lr) and tends to 1 as (t, y) →
(1, Lr).

Define conformal maps ψ± : B± → R × (0, Lr) which map γ to R × {Lr}. For
t ∈ [0, 1[, set σ′

t = (P̃t ◦ ψ±)∗(σ0) to be the pull-back of the standard complex
structure on B±. Since the action is properly discontinuous on Ω(f), we may
spread σ′

t to the whole orbit of N (γ) under the correspondence p. We let σt be
the extension of this almost complex structure to the whole Riemann sphere by
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setting σt = σ0 on the complement. It is a p-invariant complex structure. We let
Y (for yellow) be the set of points z such that σt(z) is not the standard conformal
structure for some t.

The family of p-invariant complex structures (σt)t∈[0,1) defines a pinching defor-
mation supported on R. We let ht be the quasiconformal map given by the Mea-
surable Riemann Mapping Theorem applied to σt normalised so that ht fixes both
critical points of f |Λ− and f−1|Λ+ and the point at infinity as well. The correspon-
dence pt defined by pt(z, w) = p(h−1

t (z), h−1
t (w)) is holomorphic by construction,

and the family of pairs (pt, ht)t∈[0,1) defines a marked pinching deformation.

4. Convergence of the pinching deformation

The proofs of both Theorem 1.6 and Theorem 1.8 follow essentially the same
lines. We must prove that the pinching deformation defined in the previous section
converges uniformly in each case, and we must prove that in each case the limit
correspondence has, as stabiliser of each of the components of the principal cycle
of Ω, a group conformally equivalent to PSL2(Z). The strategy for proving uni-
form convergence is inspired by [12, 13] where analogous statements are proved for
rational maps and where detailed proofs can be found.

We proceed to prove both theorems simultaneously as far as possible. We refer
to [12] and [13] when we can, instead of repeating the detailed arguments presented
in these papers. The parts of the proofs which differ for the two theorems are
postponed to the Sections 4.1 and 4.2. In particular, we delay the proof of the key
Lemma 4.2 (stated below). The first step in the proof of the theorems is to prove
that the path of quasiconformal homeomorphisms (ht) is equicontinuous. We will
apply the following criterion, the proof of which is elementary (cf. Lemma 2.5 in
[13]).

Lemma 4.1 (Equicontinuity criterion at a point). Let H = {h : D → C} be a
family of continuous injective maps such that

⋃
h∈H h(D) avoids at least 2 points

in C. Let (Un)n≥0 be a nested sequence of disc-like neighbourhoods of the origin in
the unit disc D such that An = D \ Un is an annulus. If there exists a sequence
ηn ↗ +∞ such that

∀h ∈ H, ∀n ≥ 0, mod h(An) ≥ ηn,

then H is equicontinuous at the origin.

This means that we need to get infinitely many annuli with controlled moduli.
The assumption on the fixed point β will give us information on the support of
the deformation: this will enable us to prove the following lemma in the respective
cases.

Lemma 4.2 (One good annulus around each Julia point). Fix r > 0.
(i) For any x ∈ ∂Λ− ∪ ∂Λ+ \R, there are two open neighbourhoods N ′(x) and

N(x) of x in D(x, r
4 ) and m > 0 such that mod ht(N(x) \ N ′(x)) ≥ m for

all t.
(ii) For any x = βγ ∈ R ∩ (∂Λ− ∪ ∂Λ+), with γ an R-component, there is

a sequence (tn) in [0, 1) tending to 1, a nested sequence of annuli (An)n

surrounding γ, and a constant m > 0 such that mod ht(An) ≥ m/n for
t ≥ tn.
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Then the weak hyperbolicity condition is used to spread these annuli at every
point and at every scale and therefore to imply the equicontinuity of (ht) (cf. the
proof of the Proposition 2.3 in [13] or §3 in [12]). The estimates of the conformal
moduli also enable us to analyse the structure of the fibres of any limit map and to
conclude that its fibres are exactly the closures of the connected components of R.

Any limit h1 satisfies the conclusion of the theorem and we may also extract
a convergent sequence (ptn

) of the correspondences to a correspondence p1 (cf.
Appendix A in [13]).

Since the fibre structure is well understood, it follows that if there are other limits
(ĥ, p̂ ), then ĥ ◦ h−1

1 defines a conjugacy which is conformal off h1(∂Λ− ∪ ∂Λ+) (cf.
Lemma A.2 in [13]).

Now it can be shown, as in [13], that all the limit correspondences satisfy the
“weak hyperbolicity” condition on the image of ∂Λ− ∪ ∂Λ+. Since ∂Λ− ∪ ∂Λ+

has no interior, a standard argument of Sullivan implies that the Lebesgue mea-
sure of h1(∂Λ− ∪ ∂Λ+) is zero (cf. Theorem 4.1 in [11]). Furthermore, the weak
hyperbolicity condition on p1 implies that the following rigidity statement holds.

Proposition 4.3. Let p0 and p1 be two correspondences which are matings of
weakly hyperbolic polynomials with discrete representations of C2 ∗ C3. If p0 and
p1 are conjugate by a topological homeomorphism which is conformal off the limit
sets, then the conjugacy is a Möbius transformation.

The proof of this proposition follows the same lines as Proposition 6.3 and The-
orem 0.2 in [11]. �

Thus ĥ ◦ h−1
1 is a Möbius transformation, whence the uniqueness of the limits

(pt, ht) as t tends to 1.
To complete the proofs of Theorem 1.6 and Theorem 1.8 it now remains only

to prove Lemma 4.2 in both cases, and to prove that in each case the limit of the
family of pinching deformations corresponds to the mating we are looking for.

4.1. The simple case (winding number zero). We shall make use of the statements
proved in [13] for simple pinchings of rational maps, so we have to show how to get
to that setting.

Using McMullen’s gluing lemma (Proposition 5.5 in [16]), we may construct a
rational map R of degree 2 which induces a partition of the sphere C = K�F where
K is the filled-in Julia set of a quadratic-like map induced by a restriction of R
hybrid-equivalent to q, and F is the basin of attraction of a fixed point at infinity
of multiplier 1/2. For the domains of the quadratic-like map, we first choose a
linearising disc D for the point at infinity which contains the critical value, and set
V = C \ D. If V ′ = R−1(V ), then R : V ′ → V is quadratic-like. Furthermore, we
may find a forward-invariant Jordan arc κ in F joining the point at infinity with
the corresponding β-fixed point which only cuts ∂V once, and then transversally.
Let R̂ be the grand orbit of κ for R. It follows that (R̂ \ κ) ∩ ∂V = ∅.
Proposition 4.4. There is a quasiconformal Φ : C → C such that:

• Φ(Λ−) = K and Φ(R) = R̂,
• Φ ◦ f = R ◦ Φ in a neighbourhood of Λ−,
• ∂Φ = 0 a.e. on Λ−.

Proof. We already know that there is a quasiconformal map φ : C → C which
fulfills the conclusions of the Proposition except for the condition on the curves.
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We let U ′ � U be simply connected domains such that the extension f : U ′ → U
of the branch of the correspondence f : Λ− → Λ− is a quadratic-like map hybrid-
equivalent to q. It follows from the construction of f that we may assume that U
is a fundamental domain for the involution J . Furthermore, we may also assume
that φ(U) = V .

We let φ0 : U → V be a quasiconformal homeomorphism isotopic to φ rel. Λ−
through an isotopy which maps ∂U to ∂V throughout, and such that

φ0(γ0 ∩ (U \ U ′)) = κ ∩ (V \ V ′) and R ◦ φ0|∂U ′ = φ0 ◦ f |∂U ′ .

This is possible since both sets U \Λ− and V \K are annuli and since the action of
the maps f and R are 2:1 coverings. Define (φn) inductively so that φn+1◦f = R◦φn

so that φn|Λ− = φ|Λ− and φn|U\U ′ = φ0|U\U ′ . This sequence is a normal family of
quasiconformal mappings which admits at least one limit Φ : U → V . This map
satisfies the conclusion of the proposition. �

We now provide a proof of Lemma 4.2 under the assumptions of Theorem 1.6.

Proof (Lemma 4.2). We first assume that q is not conjugate to z �→ z2 +1/4. Then
by Lemma 2.7 in [13] we have the result we seek but for R̂ and the rational map
R in place of R and the correspondence. By Proposition 4.4 this is all we need,
except for the case of the only R-component, γ0, which is not contained in the
neighbourhood U of Λ−. But γ0 is a double cover of any other component γ of R
by a branch of the correspondence, and γ0 has a neighbourhood which is a double
cover of a disc neighbourhood of γ, by the same branch.

We now deal with q(z) = z2 + 1/4. Let us denote by p the mating of q with
C2 ∗ C3 and let us define q0(z) = z2, p0 and R0 the corresponding mating and
rational map. We let (pt, ĥt) be the simple pinching of p0 considered above, and
Φ0 : Λ−(p0) → D be given by Proposition 4.4. It follows from Corollary 3.10 in [13]
that there is a µ-homeomorphism in the sense of David, φ : C → C, conjugating
p0|Ω(p0)

conformally to p|Ω(p). Furthermore, a constant K0 ≥ 1 exists such that the
set of points z ∈ C for which the dilatation ratio Kφ(z) is at least K0 is contained
in the disjoint union of the orbit of an invariant sector S ⊂ int(Λ(p0)) with vertex
β (see Lemma 2.1 in [10] for details).

We claim that the image under φ of the controlled annuli for p0 also have con-
trolled moduli. For points outside the red set, this is because the set where Kφ

is large is contained in the union of sectors so that the Key lemma in [13], which
implies the bounds on the moduli, also holds for these domains.

For points in the red set, we must be more precise and use intermediate results
which are established for the proof of Lemma 2.7 in [13]. We refer to §2.5 in [13] for
the details. We let Y be the connected component of Y(p0) which contains γ0. In
the proof of the equicontinuity at those points, it is shown that there is a sequence
ψn : An → (−C − (n + 1), C + (n + 1))2 \ [−C − n, C + n]2 of homeomorphisms,
where C is a fixed positive real number, such that, for t ≥ tn, ψn ◦ ĥ−1

t is uniformly
quasiconformal off Y \ Y . Moreover, ψn maps Φ0(S) ∩ An onto a rectangle Qn =
[−C − (n + 1),−C − n] × [C1, C2] for fixed constants C1 and C2.

The bound on the moduli for the cauliflower map z �→ z2 + 1/4 comes from a
length-area argument provided by metrics (ρt

n) defined as follows. Let t ≥ tn; on
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ĥt(Y(p0) \ Y ), we let ρt
n = 0 and on its complement we define

ρt
n =

1

|∂zĥt ◦ ψ−1
n | − |∂z̄ĥt ◦ ψ−1

n |
◦ (ψn ◦ ĥ−1

t ) .

This kind of metric is used to prove the quasi-invariance of moduli of annuli for
quasiconformal maps. This metric yields the bound mod ĥt(An) ≥ m/n where
m > 0 is independent of n.

Similarly, we let ρ̂ t
n = 0 for points in ht ◦ φ(Y(p0) \ Y ) and on the complement,

we let

ρ̂ t
n =

ρt
n

|∂zφt| − |∂z̄φt|
◦ φ−1

t ,

where φt = ht ◦ φ ◦ χ−1
t . It follows from the construction of φ that Kφ � n on Qn

(see Lemma 2.1 in [10]), so that the area of ht(φ(Qn)) is at most a multiple of n, as
the area of ht(φ(An \Qn)), for the metric ρ̂ t

n. Thus, we get mod ht(φ0(An)) ≥ c/n.
Whence we obtain the estimates of the moduli for these points also. �

The following proposition now completes the proof of Theorem 1.6.

Proposition 4.5. Under the assumptions of Theorem 1.6, the limit p1 of (pt) is a
mating of q with PSL2(Z).

Proof. The limiting correspondence p1 inherits a compatible involution J from p0,
so by Proposition 1.4 this correspondence is conjugate to some member of the family
(1.2), or equivalently to J◦CovQ

0 for Q(z) = z3−3z and J some (Möbius) involution.
The proof of the proposition now follows the same steps as the proof of Theorem
7.1 in [3], which states an analogous result for the degree 4 Chebyshev polynomial
in place of Q. We summarise the steps, but refer the reader to [3] for technical
details. The topological dynamics of p1 ensure that there exist a transversal DQ

for Q and a fundamental domain DJ for J such that the complement of the union of
the interiors of DQ and DJ consists precisely of the fixed point Λ+∩Λ−. This fixed
point is parabolic for f and it follows from local analysis that in a neighbourhood
the boundaries of DQ and DJ may be chosen to be smooth curves, tangent to one
another at the fixed point. The set DQ∩DJ is a fundamental domain for the action
of f |Ω, and since f |Ω and f−1|Ω have no critical points (only double points) we know
that f |Ω is conformally conjugate to {σρ, σρ−1} for some Fuchsian representation
of C2 ∗ C3 acting on the open upper half of the complex plane. To show that this
action is indeed that of PSL(2, Z) it suffices to show that in the upper half-plane
the images of ∂DQ and ∂DJ converge to the same point on the real axis. This can
be shown to follow from the fact that ∂DQ and ∂DJ are smooth curves which meet
tangentially (see [3]). �

4.2. Pinching arcs of non-zero rational winding number. Let p be a corre-
spondence which is a mating between z �→ z2 and a faithful discrete representation
of C2 ∗ C3 in PSL2(C) with connected ordinary set. In this section we prove
Lemma 4.2 for curves in Ω(p) with non-zero rational rotation number. The fact
that the Julia set is a quasicircle will be crucial in the proof, which closely follows
the argument in §3 of [12].

The first step is to straighten the limit set and the support of the pinching.
Figure 9 illustrates an example.
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Figure 9. Image under χ of the collars of the first two generations
of the orbit of γp/q, in the case p/q = 2/5 (cf. Figure 7).

Lemma 4.6. There is a quasiconformal map χ : C → C such that χ(∂Λ−) = SS1,
which satisfies the following properties :

• χ is conformal on the interior of Λ− ;
• χ conjugates f to z �→ z2 in a neighbourhood of the interior of Λ− ;
• components of Y which are attached at two points x and y to Λ− are mapped

into rectangles in (log)-polar coordinates with base [χ(x), χ(y)];
• components Y of Y which are attached at a single point x to Λ− are mapped

into sectors based at χ(x).

Proof. The restriction of χ to Λ− is given by the Böttcher coordinates of f . The
extension of χ to the outside makes use of a pull-back argument (see pp. 14–15 in
[12]). �

The next step of the proof is to control the moduli of many annuli. We place
ourselves in the coordinates given by χ. As in [12], we may define annuli bounded
by rectangles in the log-polar coordinates which avoid the image of Y under χ.

As in the case of simple pinchings, there is no problem with the curves which
link both components of Λ, because they cover other components which do not.
This enables us to prove Lemma 4.2 (cf. Propositions 3.3 and 3.4 in [12]).

Finally, the following proposition completes the proof of Theorem 1.8.

Proposition 4.7. Under the assumptions of Theorem 1.8, the limit p1 of (pt) is a
mating of z �→ z2 with the circle-packing representation rp/2q of C2 ∗ C3.

Proof. As in the proof of Proposition 4.5, the limiting correspondence p1 is neces-
sarily conjugate to some member of the family (1.2), or equivalently to J ◦CovQ

0 for
Q(z) = z3−3z and J some (Möbius) involution. Once again we can now follow the
same steps as in the proof of Theorem 7.1 in [3]. Transversals DQ and DJ can be
chosen this time such that the complement of the union of their interiors consists
precisely of the period q parabolic orbit Λ+∩Λ−, and such that in a neighbourhood
of any point of this orbit the boundaries of these transversals are smooth curves,
tangent to one another at the orbit point. From the fact that Ω is now a countable
union of topological discs and our knowledge of the topological dynamics of f (us-
ing convergence of the pinching deformation), we know that f |Ω and f−1|Ω have no
critical points (only double points) and that for any component of Ω which meets
the period q orbit Λ+∩Λ−, the iterated branches of f which stabilise the component
are conformally conjugate to the elements of the group generated by {σρ, σρ−1}
for some Fuchsian representation of C2 ∗ C3 acting on the open upper half of the
complex plane. As in the proof of Proposition 4.5, the properties of the boundaries
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of DQ and DJ again ensure that this representation is indeed conformally conjugate
to PSL2(Z). �
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