Pinching holomorphic correspondences
HTML articles powered by AMS MathViewer
- by Shaun Bullett and Peter Haïssinsky
- Conform. Geom. Dyn. 11 (2007), 65-89
- DOI: https://doi.org/10.1090/S1088-4173-07-00160-9
- Published electronically: June 5, 2007
- PDF | Request permission
Abstract:
For certain classes of holomorphic correspondences which are matings between Kleinian groups and polynomials, we prove the existence of pinching deformations, analogous to Maskit’s deformations of Kleinian groups which pinch loxodromic elements to parabolic elements. We apply our results to establish the existence of matings between quadratic maps and the modular group, for a large class of quadratic maps, and of matings between the quadratic map $z\to z^2$ and circle-packing representations of the free product $C_2*C_3$ of cyclic groups of order $2$ and $3$.References
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94–97. MR 111834, DOI 10.1090/S0002-9904-1960-10413-2
- Shaun Bullett and Marianne Freiberger, Holomorphic correspondences mating Chebyshev-like maps with Hecke groups, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1057–1090. MR 2158397, DOI 10.1017/S0143385704001026
- S. R. Bullett and W. J. Harvey, Mating quadratic maps with Kleinian groups via quasiconformal surgery, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 21–30. MR 1751536, DOI 10.1090/S1079-6762-00-00076-7
- Shaun Bullett and Christopher Penrose, Mating quadratic maps with the modular group, Invent. Math. 115 (1994), no. 3, 483–511. MR 1262941, DOI 10.1007/BF01231770
- Shaun Bullett and Pierrette Sentenac, Ordered orbits of the shift, square roots, and the devil’s staircase, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 451–481 (English, with English and French summaries). MR 1269932, DOI 10.1017/S0305004100072236
- Cui, G.-Z., Dynamics of rational maps, topology, deformation and bifurcation, preprint, May 2002.
- Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Peter Haïssinsky, Chirurgie parabolique, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 2, 195–198 (French, with English and French summaries). MR 1645124, DOI 10.1016/S0764-4442(98)80088-8
- Peter Haïssinsky, Rigidity and expansion for rational maps, J. London Math. Soc. (2) 63 (2001), no. 1, 128–140. MR 1802762, DOI 10.1112/S0024610700001563
- Peter Haïssinsky, Pincement de polynômes, Comment. Math. Helv. 77 (2002), no. 1, 1–23 (French, with English summary). MR 1898391, DOI 10.1007/s00014-002-8329-z
- Peter Haïssinsky and Lei Tan, Convergence of pinching deformations and matings of geometrically finite polynomials, Fund. Math. 181 (2004), no. 2, 143–188. MR 2070668, DOI 10.4064/fm181-2-4
- Bernard Maskit, On Klein’s combination theorem, Trans. Amer. Math. Soc. 120 (1965), 499–509. MR 192047, DOI 10.1090/S0002-9947-1965-0192047-1
- Bernard Maskit, Parabolic elements in Kleinian groups, Ann. of Math. (2) 117 (1983), no. 3, 659–668. MR 701259, DOI 10.2307/2007038
- Curt McMullen, Automorphisms of rational maps, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 31–60. MR 955807, DOI 10.1007/978-1-4613-9602-4_{3}
- Curt McMullen, Cusps are dense, Ann. of Math. (2) 133 (1991), no. 1, 217–247. MR 1087348, DOI 10.2307/2944328
- Feliks Przytycki and Steffen Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math. 155 (1998), no. 2, 189–199. MR 1606527
- M. Rees, Realization of matings of polynomials as rational maps of degree two, manuscript, 1986.
- Lei Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 589–620. MR 1182664, DOI 10.1017/S0143385700006957
Bibliographic Information
- Shaun Bullett
- Affiliation: School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
- Email: s.r.bullett@qmul.ac.uk
- Peter Haïssinsky
- Affiliation: LATP/CMI, Université de Provence, 39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France
- Email: phaissin@cmi.univ-mrs.fr
- Received by editor(s): June 19, 2006
- Published electronically: June 5, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 11 (2007), 65-89
- MSC (2000): Primary 37F05; Secondary 37F30
- DOI: https://doi.org/10.1090/S1088-4173-07-00160-9
- MathSciNet review: 2314243