Metric conformal structures and hyperbolic dimension
HTML articles powered by AMS MathViewer
- by Igor Mineyev
- Conform. Geom. Dyn. 11 (2007), 137-163
- DOI: https://doi.org/10.1090/S1088-4173-07-00165-8
- Published electronically: September 12, 2007
- PDF | Request permission
Abstract:
For any hyperbolic complex $X$ and $a\in X$ we construct a visual metric $\check {d}=\check {d}_a$ on $\partial X$ that makes the $\operatorname {Isom}(X)$-action on $\partial X$ bi-Lipschitz, Möbius, symmetric and conformal.
We define a stereographic projection of $\check {d}_a$ and show that it is a metric conformally equivalent to $\check {d}_a$.
We also introduce a notion of hyperbolic dimension for hyperbolic spaces with group actions. Problems related to hyperbolic dimension are discussed.
References
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI 10.1007/s00222-002-0233-z
- —, Rigidity for quasi-Möbius group actions, J. Differential Geom., 61 (2002), pp. 81–106.
- —, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geometry and Topology, 9 (2005), pp. 219–246.
- Marc Bourdon, Structure conforme au bord et flot géodésique d’un $\textrm {CAT}(-1)$-espace, Enseign. Math. (2) 41 (1995), no. 1-2, 63–102 (French, with English and French summaries). MR 1341941
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI 10.1007/BF02398434
- J. W. Cannon and Daryl Cooper, A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992), no. 1, 419–431. MR 1036000, DOI 10.1090/S0002-9947-1992-1036000-0
- James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry, Hyperbolic geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 59–115. MR 1491098
- J. W. Cannon and E. L. Swenson, Recognizing constant curvature discrete groups in dimension $3$, Trans. Amer. Math. Soc. 350 (1998), no. 2, 809–849. MR 1458317, DOI 10.1090/S0002-9947-98-02107-2
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), no. 3, 449–457. MR 807066, DOI 10.1007/BF01388581
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926
- E. Ghys and P. de la Harpe, Le bord d’un espace hyperbolique, in Sur les groupes hyperboliques d’après Mikhael Gromov, E. Ghys and P. de la Harpe, eds., vol. 83 of Progress in Mathematics, Birkhäuser, 1988, ch. 7.
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648, DOI 10.1007/978-1-4684-9167-8
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747
- Sa’ar Hersonsky and Frédéric Paulin, On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997), no. 3, 349–388. MR 1476054, DOI 10.1007/s000140050022
- G. A. Margulis, The isometry of closed manifolds of constant negative curvature with the same fundamental group, Dokl. Akad. Nauk SSSR 192 (1970), 736–737 (Russian). MR 0266103
- I. Mineyev, Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11 (2001), no. 4, 807–839. MR 1866802, DOI 10.1007/PL00001686
- —, Flows and joins of metric spaces, Geometry and Topology, 9 (2005), pp. 402–482. Available at http://www.maths.warwick.ac.uk/gt/GTVol9/paper13.abs.html.
- Igor Mineyev and Guoliang Yu, The Baum-Connes conjecture for hyperbolic groups, Invent. Math. 149 (2002), no. 1, 97–122. MR 1914618, DOI 10.1007/s002220200214
- Jean-Pierre Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoamericana 8 (1992), no. 3, 441–456 (French). MR 1202417, DOI 10.4171/RMI/130
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI 10.5186/aasfm.1989.1424
- Peter Scott and Terry Wall, Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 137–203. MR 564422
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833
- Pekka Tukia, Differentiability and rigidity of Möbius groups, Invent. Math. 82 (1985), no. 3, 557–578. MR 811551, DOI 10.1007/BF01388870
- —, On quasiconformal groups, J. Analyse Math., 46 (1986), pp. 318–346.
- P. Tukia, A rigidity theorem for Möbius groups, Invent. Math. 97 (1989), no. 2, 405–431. MR 1001847, DOI 10.1007/BF01389048
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
Bibliographic Information
- Igor Mineyev
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801
- Email: mineyev@math.uiuc.edu
- Received by editor(s): May 7, 2007
- Published electronically: September 12, 2007
- Additional Notes: This project is partially supported by NSF CAREER grant DMS-0132514
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 11 (2007), 137-163
- MSC (2000): Primary 20F65, 20F67, 20F69, 37F35, 30C35, 54E35, 54E45, 51K99, 54F45
- DOI: https://doi.org/10.1090/S1088-4173-07-00165-8
- MathSciNet review: 2346214