Mappings of finite distortion: Formation of cusps II
Author:
Juhani Takkinen
Journal:
Conform. Geom. Dyn. 11 (2007), 207-218
MSC (2000):
Primary 30C62, 30C65
DOI:
https://doi.org/10.1090/S1088-4173-07-00170-1
Published electronically:
October 18, 2007
MathSciNet review:
2354095
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For $s>0$ given, we consider a planar domain $\Omega _s$ with a rectifiable boundary but containing a cusp of degree $s$, and show that there is no homeomorphism $f\colon \mathbb {R}^2\to \mathbb {R}^2$ of finite distortion with $\exp (\lambda K)\in L^1_{\mathrm {loc}}(\mathbb {R}^2)$ so that $f(B)=\Omega _s$ when $\lambda >4/s$ and $B$ is the unit disc. On the other hand, for $\lambda <2/s$ such an $f$ exists. The critical value for $\lambda$ remains open.
- Kari Astala, Tadeusz Iwaniec, Pekka Koskela, and Gaven Martin, Mappings of BMO-bounded distortion, Math. Ann. 317 (2000), no. 4, 703–726. MR 1777116, DOI https://doi.org/10.1007/PL00004420
- Guy David, Solutions de l’équation de Beltrami avec $\|\mu \|_\infty =1$, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 25–70 (French). MR 975566, DOI https://doi.org/10.5186/aasfm.1988.1303
- V. Gutlyanskiĭ, O. Martio, T. Sugawa, and M. Vuorinen, On the degenerate Beltrami equation, Trans. Amer. Math. Soc. 357 (2005), no. 3, 875–900. MR 2110425, DOI https://doi.org/10.1090/S0002-9947-04-03708-0
- David A. Herron and Pekka Koskela, Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math. 47 (2003), no. 4, 1243–1259. MR 2037001
- Tadeusz Iwaniec, Pekka Koskela, and Gaven Martin, Mappings of BMO-distortion and Beltrami-type operators, J. Anal. Math. 88 (2002), 337–381. Dedicated to the memory of Tom Wolff. MR 1979776, DOI https://doi.org/10.1007/BF02786581
- Tadeusz Iwaniec and Gaven Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913
- Janne Kauhanen, Pekka Koskela, and Jan Malý, Mappings of finite distortion: condition N, Michigan Math. J. 49 (2001), no. 1, 169–181. MR 1827080, DOI https://doi.org/10.1307/mmj/1008719040
- Pekka Koskela and Juhani Takkinen, Mappings of finite distortion: formation of cusps, Publ. Mat. 51 (2007), no. 1, 223–242. MR 2307153, DOI https://doi.org/10.5565/PUBLMAT_51107_10
- Jani Onninen and Xiao Zhong, A note on mappings of finite distortion: the sharp modulus of continuity, Michigan Math. J. 53 (2005), no. 2, 329–335. MR 2152704, DOI https://doi.org/10.1307/mmj/1123090772
- V. Ryazanov, U. Srebro, and E. Yakubov, BMO-quasiconformal mappings, J. Anal. Math. 83 (2001), 1–20. MR 1828484, DOI https://doi.org/10.1007/BF02790254
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
- Saeed Zakeri, David maps and Hausdorff dimension, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 121–138. MR 2041702
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C62, 30C65
Retrieve articles in all journals with MSC (2000): 30C62, 30C65
Additional Information
Juhani Takkinen
Affiliation:
Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014 Finland
Email:
juhani@maths.jyu.fi
Keywords:
Cusp,
homeomorphism,
mapping of finite distortion
Received by editor(s):
May 21, 2007
Published electronically:
October 18, 2007
Additional Notes:
The author was partially supported by the foundation Vilho, Yrjö ja Kalle Väisälän rahasto.
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.