Topics in special functions. II
HTML articles powered by AMS MathViewer
- by G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen
- Conform. Geom. Dyn. 11 (2007), 250-270
- DOI: https://doi.org/10.1090/S1088-4173-07-00168-3
- Published electronically: November 8, 2007
- PDF | Request permission
Abstract:
In geometric function theory, conformally invariant extremal problems often have expressions in terms of special functions. Such problems occur, for instance, in the study of change of euclidean and noneuclidean distances under quasiconformal mappings. This fact has led to many new results on special functions. Our goal is to provide a survey of such results.References
- Stephen Agard, Distortion theorems for quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 413 (1968), 12. MR 0222288
- S. B. Agard and F. W. Gehring, Angles and quasiconformal mappings, Proc. London Math. Soc. (3) 14a (1965), 1–21. MR 178140, DOI 10.1112/plms/s3-14A.1.1
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Lars Ahlfors and Arne Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101–129. MR 36841, DOI 10.1007/BF02392634
- G. D. Anderson: Mathematical Reviews.
- G. D. Anderson, S.-L. Qiu, and M. K. Vamanamurthy, Grötzsch ring and quasiconformal distortion functions, Hokkaido Math. J. 24 (1995), no. 3, 551–566. MR 1357030, DOI 10.14492/hokmj/1380892608
- G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy, and M. Vuorinen, Generalized elliptic integrals and modular equations, Pacific J. Math. 192 (2000), no. 1, 1–37. MR 1741031, DOI 10.2140/pjm.2000.192.1
- G. D. Anderson, S.-L. Qiu, and M. Vuorinen: Modular equations and distortion functions, Ramanujan J. (to appear), arXiv math.CV/0701228.
- G. D. Anderson, T. Sugawa, M. K. Vamanamurthy, and M. Vuorinen: Special functions and hyperbolic metric, Manuscript, 2007.
- Glen D. Anderson and M. K. Vamanamurthy, Some properties of quasiconformal distortion functions, New Zealand J. Math. 24 (1995), no. 1, 1–15. MR 1348048
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Distortion functions for plane quasiconformal mappings, Israel J. Math. 62 (1988), no. 1, 1–16. MR 947825, DOI 10.1007/BF02767349
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Special functions of quasiconformal theory, Exposition. Math. 7 (1989), no. 2, 97–136. MR 1001253
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J. Math. 160 (1993), no. 1, 1–18. MR 1227499, DOI 10.2140/pjm.1993.160.1
- Glen D. Anderson, Mavina K. Vamanamurthy, and Matti K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD); A Wiley-Interscience Publication. MR 1462077
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Topics in special functions, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 5–26. MR 1886609
- A. Baernstein II, A. Eremenko, A. Fryntov, and A. Solynin, Sharp estimates for hyperbolic metrics and covering theorems of Landau type, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 113–133. MR 2140301
- Árpád Baricz, Landen-type inequality for Bessel functions, Comput. Methods Funct. Theory 5 (2005), no. 2, 373–379. MR 2205420, DOI 10.1007/BF03321104
- Árpád Baricz, Functional inequalities involving special functions, J. Math. Anal. Appl. 319 (2006), no. 2, 450–459. MR 2227916, DOI 10.1016/j.jmaa.2005.06.052
- Árpád Baricz, Functional inequalities involving special functions. II, J. Math. Anal. Appl. 327 (2007), no. 2, 1202–1213. MR 2279998, DOI 10.1016/j.jmaa.2006.05.006
- Árpád Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z. 256 (2007), no. 4, 895–911. MR 2308896, DOI 10.1007/s00209-007-0111-x
- Roger W. Barnard, Leah Cole, and Alexander Yu. Solynin, Minimal harmonic measure on complementary regions, Comput. Methods Funct. Theory 2 (2002), no. 1, [On table of contents: 2003], 229–247. MR 2000559, DOI 10.1007/BF03321018
- Roger W. Barnard, Petros Hadjicostas, and Alexander Yu. Solynin, The Poincaré metric and isoperimetric inequalities for hyperbolic polygons, Trans. Amer. Math. Soc. 357 (2005), no. 10, 3905–3932. MR 2159693, DOI 10.1090/S0002-9947-05-03946-2
- A. F. Beardon, The hyperbolic metric of a rectangle, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 401–407. MR 1833248
- Alan F. Beardon, The hyperbolic metric in a rectangle. II, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 143–152. MR 1976836
- Bruce C. Berndt, Ramanujan’s notebooks. Part II, Springer-Verlag, New York, 1989. MR 970033, DOI 10.1007/978-1-4612-4530-8
- Bruce C. Berndt, Ramanujan’s notebooks. Part IV, Springer-Verlag, New York, 1994. MR 1261634, DOI 10.1007/978-1-4612-0879-2
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- Mieczysław Biernacki and Jan Krzyż, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 9 (1955), 135–147 (1957) (English, with Russian and Polish summaries). MR 89903
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- Isaac Chavel, Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. MR 1271141
- V. N. Dubinin and D. Karp: Capacities of certain plane condensers and sets under simple geometric transformations, Complex. Var. Elliptic Equ. (to appear).
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474
- John B. Garnett and Shan Shuang Yang, Quasiextremal distance domains and integrability of derivatives of conformal mappings, Michigan Math. J. 41 (1994), no. 2, 389–406. MR 1278443, DOI 10.1307/mmj/1029005004
- F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1–70. MR 180674, DOI 10.1007/BF02391817
- W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
- Cheng Qi He, Distortion estimates of quasiconformal mappings, Sci. Sinica Ser. A 27 (1984), no. 3, 225–232. MR 763965
- V. Heikkala, H. Lindén, M. K. Vamanamurthy, and M. Vuorinen: Generalized elliptic integrals and the Legendre M-function, J. Math. Anal. Appl. 338 (2008), 223–243, arXiv math.CA/0701438.
- V. Heikkala, M. K. Vamanamurthy, and M. Vuorinen: Generalized elliptic integrals, Preprint 404, November 2004, University of Helsinki, arXiv math.CA/0701436.
- Ville Heikkala and Matti Vuorinen, Teichmüller’s extremal ring problem, Math. Z. 254 (2006), no. 3, 509–529. MR 2244363, DOI 10.1007/s00209-006-0954-6
- Joachim A. Hempel, The Poincaré metric on the twice punctured plane and the theorems of Landau and Schottky, J. London Math. Soc. (2) 20 (1979), no. 3, 435–445. MR 561135, DOI 10.1112/jlms/s2-20.3.435
- Joachim A. Hempel, Precise bounds in the theorems of Schottky and Picard, J. London Math. Soc. (2) 21 (1980), no. 2, 279–286. MR 575385, DOI 10.1112/jlms/s2-21.2.279
- Joseph Hersch, Longueurs estrémales et théorie des fonctions, Comment. Math. Helv. 29 (1955), 301–337 (French). MR 76031, DOI 10.1007/BF02564285
- Joseph Hersch and Albert Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234 (1952), 43–45 (French). MR 46452
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- O. Hübner, Remarks on a paper by Ławrynowicz on quasiconformal mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 183–186 (English, with Russian summary). MR 264066
- Moonja Jeong, Jong-Won Oh, and Masahiko Taniguchi, Equivalence problem for annuli and Bell representations in the plane, J. Math. Anal. Appl. 325 (2007), no. 2, 1295–1305. MR 2270084, DOI 10.1016/j.jmaa.2006.02.001
- Stanisława Kanas and Toshiyuki Sugawa, On conformal representations of the interior of an ellipse, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 329–348. MR 2248819
- Yong Chan Kim and Toshiyuki Sugawa, A conformal invariant for nonvanishing analytic functions and its applications, Michigan Math. J. 54 (2006), no. 2, 393–410. MR 2252767, DOI 10.1307/mmj/1156345602
- R. Kühnau, The application of conformal maps in electrostatics, Handbook of complex analysis: geometric function theory. Vol. 2, Elsevier Sci. B. V., Amsterdam, 2005, pp. 599–619. MR 2121868, DOI 10.1016/S1874-5709(05)80017-4
- Shigenori Kurihara and Shinji Yamashita, Extremal functions for plane quasiconformal mappings, J. Math. Kyoto Univ. 43 (2003), no. 1, 71–99. MR 2028701, DOI 10.1215/kjm/1250283741
- G. V. Kuz′mina, Moduli of families of curves and quadratic differentials, Trudy Mat. Inst. Steklov. 139 (1980), 241 (Russian). MR 612632
- G. V. Kuz′mina, Methods of the geometric theory of functions. I, Algebra i Analiz 9 (1997), no. 3, 41–103 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 9 (1998), no. 3, 455–507. MR 1466796
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Olli Lehto, K. I. Virtanen, and Jussi Väisälä, Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 273 (1959), 14. MR 0122990
- Abdallah Lyzzaik, The modulus of the image annuli under univalent harmonic mappings and a conjecture of Nitsche, J. London Math. Soc. (2) 64 (2001), no. 2, 369–384. MR 1853457, DOI 10.1112/S0024610701002460
- G. J. Martin, The distortion theorem for quasiconformal mappings, Schottky’s theorem and holomorphic motions, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1095–1103. MR 1363178, DOI 10.1090/S0002-9939-97-03677-0
- Akira Mori, On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84 (1957), 56–77. MR 83024, DOI 10.1090/S0002-9947-1957-0083024-5
- Dariusz Partyka, The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125. MR 1454189
- Dariusz Partyka and Ken-ichi Sakan, On an asymptotically sharp variant of Heinz’s inequality, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 167–182. MR 2140305
- D. Partyka and K. Sakan: On bi-Lipschitz type inequalities for quasiconformal harmonic mappings, Ann. Acad. Sci. Fenn. Math. 32 (2007), 579–594.
- Iosif Pinelis, l’Hospital rules for monotonicity and the Wilker-Anglesio inequality, Amer. Math. Monthly 111 (2004), no. 10, 905–909. MR 2104696, DOI 10.2307/4145099
- Songliang Qiu, Agard’s $\eta$-distortion function and Schottky’s theorem, Sci. China Ser. A 40 (1997), no. 1, 1–9. MR 1451085, DOI 10.1007/BF03182864
- Songliang Qiu, On Mori’s theorem in quasiconformal theory, Acta Math. Sinica (N.S.) 13 (1997), no. 1, 35–44. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 2, 319. MR 1465533, DOI 10.1007/BF02560522
- S. L. Qiu, M. K. Vamanamurthy, and M. Vuorinen, Bounds for quasiconformal distortion functions, J. Math. Anal. Appl. 205 (1997), no. 1, 43–64. MR 1426979, DOI 10.1006/jmaa.1996.5205
- S.-L. Qiu, M. K. Vamanamurthy, and M. Vuorinen, Some inequalities for the Hersch-Pfluger distortion function, J. Inequal. Appl. 4 (1999), no. 2, 115–139. MR 1733479, DOI 10.1155/S1025583499000326
- S.-L. Qiu and M. Vuorinen, Quasimultiplicative properties for the $\eta$-distortion function, Complex Variables Theory Appl. 30 (1996), no. 1, 77–96. MR 1395233, DOI 10.1080/17476939608814913
- S.-L. Qiu and M. Vuorinen, Submultiplicative properties of the $\phi _K$-distortion function, Studia Math. 117 (1996), no. 3, 225–242. MR 1373847
- L. Reséndis and J. Zaja̧c, The Beurling-Ahlfors extension of quasihomographies, Comment. Math. Univ. St. Paul. 46 (1997), no. 2, 133–174. MR 1471828
- Seppo Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I 395 (1966), 30. MR 0210889
- Seppo Rickman, Extension over quasiconformally equivalent curves, Ann. Acad. Sci. Fenn. Ser. A I 436 (1968), 10. MR 0245791
- K. Schiefermayr: Upper and lower bounds for the logarithmic capacity of two intervals, Manuscript, 2005.
- Yu-Liang Shen, Conformal invariants of QED domains, Tohoku Math. J. (2) 56 (2004), no. 3, 445–466. MR 2075777
- A. Yu. Solynin and M. Vuorinen, Extremal problems and symmetrization for plane ring domains, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4095–4112. MR 1333399, DOI 10.1090/S0002-9947-96-01546-2
- A. Yu. Solynin and M. Vuorinen, Estimates for the hyperbolic metric of the punctured plane and applications, Israel J. Math. 124 (2001), 29–60. MR 1856503, DOI 10.1007/BF02772606
- Toshiyuki Sugawa and Matti Vuorinen, Some inequalities for the Poincaré metric of plane domains, Math. Z. 250 (2005), no. 4, 885–906. MR 2180380, DOI 10.1007/s00209-005-0782-0
- O. Teichmüller: Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938), 621–678.
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products, and quasiconformal maps, Illinois J. Math. 38 (1994), no. 3, 394–419. MR 1269695, DOI 10.1215/ijm/1255986722
- Alexander Vasil′ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Mathematics, vol. 1788, Springer-Verlag, Berlin, 2002. MR 1929066, DOI 10.1007/b83857
- Alexander Vasil′ev, On distortion under quasiconformal mapping, Rocky Mountain J. Math. 34 (2004), no. 1, 347–370. MR 2061136, DOI 10.1216/rmjm/1181069910
- Matti Vuorinen, Geometric properties of quasiconformal maps and special functions. I. Quasiconformal maps and spheres, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 24 (1997), 7–22 (English, with English and Polish summaries). MR 1629728
- M. Vuorinen: Metrics and quasiregular mappings, in Quasiconformal Mappings and Their Applications, eds. S. Ponnusamy, T. Sugawa, and M. Vuorinen, Narosa Publ. (2007), 291-325, available at http:www.math.utu.fi/proceedings/madras.
- M. Vuorinen: Quasiconformal images of spheres, Mini-Conference on Quasiconformal Mappings, Sobolev Spaces and Special Functions, Kurashiki, Japan, 2003-01-08, available at http:www.capjn.org/complex/conf02/kurashiki/vuorinen.pdf.
- Gen-di Wang, Xiao-hui Zhang, Song-liang Qiu, and Yu-ming Chu, The bounds of the solutions to generalized modular equations, J. Math. Anal. Appl. 321 (2006), no. 2, 589–594. MR 2241141, DOI 10.1016/j.jmaa.2005.08.064
- Shanhe Wu and Lokenath Debnath, A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality. II, Appl. Math. Lett. 20 (2007), no. 5, 532–538. MR 2303989, DOI 10.1016/j.aml.2006.05.022
- Shinji Yamashita, Inverse functions of Grötzsch’s and Teichmüller’s modulus functions, J. Math. Kyoto Univ. 43 (2004), no. 4, 771–805. MR 2030798, DOI 10.1215/kjm/1250281735
- J. Zając, Functional identities for special functions of quasiconformal theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 1, 93–103. MR 1207897
- X. Zhang, G. Wang, and Y. Chu: Some inequalities for the generalized Grötzsch function, Proc. Edinburgh Math. Soc. (to appear)
Bibliographic Information
- G. D. Anderson
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Email: anderson@math.msu.edu
- M. K. Vamanamurthy
- Affiliation: Department of Mathematics, University of Auckland, Auckland, New Zealand
- Email: vamanamu@math.auckland.nz
- M. Vuorinen
- Affiliation: Department of Mathematics, FIN-00014, University of Turku, Finland
- MR Author ID: 179630
- Email: vuorinen@utu.fi
- Received by editor(s): March 30, 2007
- Published electronically: November 8, 2007
- Additional Notes: The authors thank the Finnish Mathematical Society, the Finnish Academy of Sciences, and the Academy of Finland (grant no. 107317) for their support of this research.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 11 (2007), 250-270
- MSC (2000): Primary 30C62; Secondary 33E05, 33E99
- DOI: https://doi.org/10.1090/S1088-4173-07-00168-3
- MathSciNet review: 2354098
Dedicated: Dedicated to Seppo Rickman and Jussi Väisälä.