Uniform continuity of quasiconformal mappings and conformal deformations
Authors:
Pekka Koskela and Tomi Nieminen
Journal:
Conform. Geom. Dyn. 12 (2008), 10-17
MSC (2000):
Primary 30C65
DOI:
https://doi.org/10.1090/S1088-4173-08-00174-4
Published electronically:
January 22, 2008
MathSciNet review:
2372760
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that quasiconformal maps onto domains satisfying a suitable growth condition on the quasihyperbolic metric are uniformly continuous even when both domains are equipped with internal metric. The improvement over previous results is that the internal metric can be used also in the image domain. We also extend this result for conformal deformations of the euclidean metric on the unit ball of .
- 1. Mario Bonk, Pekka Koskela, and Steffen Rohde, Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. (3) 77 (1998), no. 3, 635–664. MR 1643421, https://doi.org/10.1112/S0024611598000586
- 2. F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353–361. MR 148884
- 3. F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203–219. MR 802481, https://doi.org/10.5186/aasfm.1985.1022
- 4. F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, https://doi.org/10.1007/BF02798768
- 5. Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, https://doi.org/10.1007/BF02392747
- 6. Stanislav Hencl and Pekka Koskela, Quasihyperbolic boundary conditions and capacity: uniform continuity of quasiconformal mappings, J. Anal. Math. 96 (2005), 19–35. MR 2177180, https://doi.org/10.1007/BF02787823
- 7. David A. Herron and Pekka Koskela, Conformal capacity and the quasihyperbolic metric, Indiana Univ. Math. J. 45 (1996), no. 2, 333–359. MR 1414333, https://doi.org/10.1512/iumj.1996.45.1966
- 8. Pekka Koskela, Jani Onninen, and Jeremy T. Tyson, Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings, Comment. Math. Helv. 76 (2001), no. 3, 416–435. MR 1854692, https://doi.org/10.1007/PL00013214
- 9. T. Nieminen, Conformal metrics and boundary accessibility, Preprint 339, Department of Mathematics and Statistics, University of Jyväskylä, 2007.
- 10. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C65
Retrieve articles in all journals with MSC (2000): 30C65
Additional Information
Pekka Koskela
Affiliation:
Department of Mathematics, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
Email:
pkoskela@maths.jyu.fi
Tomi Nieminen
Affiliation:
Department of Mathematics, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
Email:
tominiem@maths.jyu.fi
DOI:
https://doi.org/10.1090/S1088-4173-08-00174-4
Keywords:
Quasiconformal mapping,
conformal metric.
Received by editor(s):
April 19, 2007
Published electronically:
January 22, 2008
Article copyright:
© Copyright 2008
American Mathematical Society