Holes and maps of Euclidean domains
Author:
Jussi Väisälä
Journal:
Conform. Geom. Dyn. 12 (2008), 58-66
MSC (2000):
Primary 30C65
DOI:
https://doi.org/10.1090/S1088-4173-08-00176-8
Published electronically:
March 13, 2008
MathSciNet review:
2385408
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the behavior of the quasiconvexity and bounded turning of holes of domains under quasisymmetric and bilipschitz maps.
- [GNV] M. Ghamsari, R. Näkki, and J. Väisälä, John disks and extension of maps, Monatsh. Math. 117 (1994), no. 1-2, 63–94. MR 1266774, https://doi.org/10.1007/BF01299312
- [HH] H. Hakobyan and D.A. Herron, Euclidean quasiconvexity, Ann. Acad. Sci. Fenn. Math. 33 (2008), 205-230.
- [HY] J.G. Hocking and G.S. Young, Topology, Academic Press, 1959.
- [NV] Raimo Näkki and Jussi Väisälä, John disks, Exposition. Math. 9 (1991), no. 1, 3–43. MR 1101948
- [Ne] M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge, At the University Press, 1951. 2nd ed. MR 0044820
- [TV] P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, https://doi.org/10.5186/aasfm.1980.0531
- [Vä1] Jussi Väisälä, Quasiconformal maps of cylindrical domains, Acta Math. 162 (1989), no. 3-4, 201–225. MR 989396, https://doi.org/10.1007/BF02392837
- [Vä2] Jussi Väisälä, Metric duality in Euclidean spaces, Math. Scand. 80 (1997), no. 2, 249–288. MR 1481106, https://doi.org/10.7146/math.scand.a-12620
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C65
Retrieve articles in all journals with MSC (2000): 30C65
Additional Information
Jussi Väisälä
Affiliation:
Matematiikan Laitos, Helsingin Yliopisto, Helsinki, Finland
DOI:
https://doi.org/10.1090/S1088-4173-08-00176-8
Keywords:
Quasisymmetric,
bilipschitz,
bounded turning,
quasiconvex
Received by editor(s):
November 13, 2007
Published electronically:
March 13, 2008
Article copyright:
© Copyright 2008
American Mathematical Society