An extension of the Maskit slice for $4$-dimensional Kleinian groups
HTML articles powered by AMS MathViewer
- by Yoshiaki Araki and Kentaro Ito
- Conform. Geom. Dyn. 12 (2008), 199-226
- DOI: https://doi.org/10.1090/S1088-4173-08-00187-2
- Published electronically: December 15, 2008
- PDF | Request permission
Abstract:
Let $\Gamma$ be a $3$-dimensional Kleinian punctured torus group with accidental parabolic transformations. The deformation space of $\Gamma$ in the group of Möbius transformations on the $2$-sphere is well known as the Maskit slice ${\mathcal {M}}_{1,1}$ of punctured torus groups. In this paper, we study deformations $\Gamma ’$ of $\Gamma$ in the group of Möbius transformations on the $3$-sphere such that $\Gamma ’$ does not contain screw parabolic transformations. We will show that the space of the deformations is realized as a domain of $3$-space $\mathbb {R}^3$, which contains the Maskit slice ${\mathcal {M}}_{1,1}$ as a slice through a plane. Furthermore, we will show that the space also contains the Maskit slice $\mathcal {M}_{0,4}$ of fourth-punctured sphere groups as a slice through another plane. Some of the other slices of the space will be also studied.References
- K. Ahara and Y. Araki. Sphairahedral approach to parameterize visible three dimensional quasi-Fuchsian fractals. Proc. of the CGI (2003), 226-229.
- Boris N. Apanasov, Conformal geometry of discrete groups and manifolds, De Gruyter Expositions in Mathematics, vol. 32, Walter de Gruyter & Co., Berlin, 2000. MR 1800993, DOI 10.1515/9783110808056
- Ara Basmajian, Tubular neighborhoods of totally geodesic hypersurfaces in hyperbolic manifolds, Invent. Math. 117 (1994), no. 2, 207–225. MR 1273264, DOI 10.1007/BF01232240
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- Wensheng Cao, John R. Parker, and Xiantao Wang, On the classification of quaternionic Möbius transformations, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 349–361. MR 2092064, DOI 10.1017/S0305004104007868
- David B. A. Epstein and Carlo Petronio, An exposition of Poincaré’s polyhedron theorem, Enseign. Math. (2) 40 (1994), no. 1-2, 113–170. MR 1279064
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1792613
- Michael Kapovich, Kleinian groups in higher dimensions, Geometry and dynamics of groups and spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 487–564. MR 2402415, DOI 10.1007/978-3-7643-8608-5_{1}3
- Irwin Kra, Horocyclic coordinates for Riemann surfaces and moduli spaces. I. Teichmüller and Riemann spaces of Kleinian groups, J. Amer. Math. Soc. 3 (1990), no. 3, 499–578. MR 1049503, DOI 10.1090/S0894-0347-1990-1049503-1
- Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719–749. MR 1241870, DOI 10.1016/0040-9383(93)90048-Z
- A. Marden, Outer circles, Cambridge University Press, Cambridge, 2007. An introduction to hyperbolic 3-manifolds. MR 2355387, DOI 10.1017/CBO9780511618918
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Shigenori Matsumoto, Foundations of flat conformal structure, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 167–261. MR 1208312, DOI 10.2969/aspm/02010167
- Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), no. 2, 559–626. MR 1689341, DOI 10.2307/120976
- David Mumford, Caroline Series, and David Wright, Indra’s pearls, Cambridge University Press, New York, 2002. The vision of Felix Klein. MR 1913879, DOI 10.1017/CBO9781107050051.024
Bibliographic Information
- Yoshiaki Araki
- Affiliation: Synclore Corporation, Hakuyo Building, 3-10 Nibancho Chiyoda-ku, Tokyo 102-0084, Japan
- Email: yoshiaki.araki@synclore.com
- Kentaro Ito
- Affiliation: Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
- Email: itoken@math.nagoya-u.ac.jp
- Received by editor(s): April 1, 2008
- Published electronically: December 15, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 12 (2008), 199-226
- DOI: https://doi.org/10.1090/S1088-4173-08-00187-2
- MathSciNet review: 2466017