The Julia sets of basic uniCremer polynomials of arbitrary degree
HTML articles powered by AMS MathViewer
- by Alexander Blokh and Lex Oversteegen
- Conform. Geom. Dyn. 13 (2009), 139-159
- DOI: https://doi.org/10.1090/S1088-4173-09-00195-7
- Published electronically: June 17, 2009
- PDF | Request permission
Abstract:
Let $P$ be a polynomial of degree $d$ with a Cremer point $p$ and no repelling or parabolic periodic bi-accessible points. We show that there are two types of such Julia sets $J_P$. The red dwarf $J_P$ are nowhere connected im kleinen and such that the intersection of all impressions of external angles is a continuum containing $p$ and the orbits of all critical images. The solar $J_P$ are such that every angle with dense orbit has a degenerate impression disjoint from other impressions and $J_P$ is connected im kleinen at its landing point. We study bi-accessible points and locally connected models of $J_P$ and show that such sets $J_P$ appear through polynomial-like maps for generic polynomials with Cremer points. Since known tools break down for $d>2$ (if $d>2$, it is not known if there are small cycles near $p$, while if $d=2$, this result is due to Yoccoz), we introduce wandering ray continua in $J_P$ and provide a new application of Thurston laminations.References
- A. Blokh, X. Buff, A. Chéritat and L. Oversteegen, The solar Julia sets of basic quadratic Cremer polynomials, preprint 2007.
- Alexander Blokh and Lex Oversteegen, The Julia sets of quadratic Cremer polynomials, Topology Appl. 153 (2006), no. 15, 3038–3050. MR 2248408, DOI 10.1016/j.topol.2006.02.001
- Alexander Blokh and Lex Oversteegen, The Julia sets of quadratic Cremer polynomials, Topology Appl. 153 (2006), no. 15, 3038–3050. MR 2248408, DOI 10.1016/j.topol.2006.02.001
- A. Blokh and L. Oversteegen, Fixed points in non-invariant plane continua, preprint, arXiv:0805.1069 (2008).
- A. Blokh and G. Levin, An inequality for laminations, Julia sets and “growing trees”, Ergodic Theory Dynam. Systems 22 (2002), no. 1, 63–97. MR 1889565, DOI 10.1017/S0143385702000032
- Douglas K. Childers, John C. Mayer, and James T. Rogers Jr., Indecomposable continua and the Julia sets of polynomials. II, Topology Appl. 153 (2006), no. 10, 1593–1602. MR 2216123, DOI 10.1016/j.topol.2004.04.013
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes I, II, Publications Mathématiques d’Orsay 84-02 (1984), 85-04 (1985).
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Lisa R. Goldberg and John Milnor, Fixed points of polynomial maps. II. Fixed point portraits, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 51–98. MR 1209913, DOI 10.24033/asens.1667
- Joachim Grispolakis, John C. Mayer, and Lex G. Oversteegen, Building blocks for quadratic Julia sets, Trans. Amer. Math. Soc. 351 (1999), no. 3, 1171–1201. MR 1615975, DOI 10.1090/S0002-9947-99-02346-6
- Jo W. Heath, Each locally one-to-one map from a continuum onto a tree-like continuum is a homeomorphism, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2571–2573. MR 1371127, DOI 10.1090/S0002-9939-96-03736-7
- J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 467–511. MR 1215974
- Jan Kiwi, Non-accessible critical points of Cremer polynomials, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1391–1403. MR 1786720, DOI 10.1017/S0143385700000754
- Jan Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1473–1485. MR 1873015, DOI 10.1090/S0002-9947-01-02896-3
- Jan Kiwi, $\Bbb R$eal laminations and the topological dynamics of complex polynomials, Adv. Math. 184 (2004), no. 2, 207–267. MR 2054016, DOI 10.1016/S0001-8708(03)00144-0
- G. Levin, On backward stability of holomorphic dynamical systems, Fund. Math. 158 (1998), no. 2, 97–107. MR 1656942, DOI 10.4064/fm-158-2-97-107
- Ricardo Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 1, 1–11. MR 1224298, DOI 10.1007/BF01231694
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- R. Perez-Marco, Topology of Julia sets and hedgehogs, Publications Mathématiques d’Orsay 94-48 (1994).
- Ricardo Pérez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), no. 2, 243–294. MR 1607557, DOI 10.1007/BF02392745
- Dierk Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 477–517. MR 2112117, DOI 10.1090/pspum/072.1/2112117
- Dierk Schleicher and Saeed Zakeri, On biaccessible points in the Julia set of a Cremer quadratic polynomial, Proc. Amer. Math. Soc. 128 (2000), no. 3, 933–937. MR 1637424, DOI 10.1090/S0002-9939-99-05111-4
- Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296, DOI 10.1007/BFb0061443
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- W. P. Thurston, On the geometry and dynamics of iterated rational maps, Preprint, 1985.
- J. C. Yoccoz, Petits diviseurs en dimension 1, Asterisque 231 (1995).
Bibliographic Information
- Alexander Blokh
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- MR Author ID: 196866
- Email: ablokh@math.uab.edu
- Lex Oversteegen
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- MR Author ID: 134850
- Email: overstee@math.uab.edu
- Received by editor(s): May 8, 2008
- Published electronically: June 17, 2009
- Additional Notes: The first author was partially supported by NSF grant DMS-0456748
The second author was partially supported by NSF grant DMS-0405774 - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 13 (2009), 139-159
- MSC (2000): Primary 37F10; Secondary 37F50, 37B45, 37C25, 54F15
- DOI: https://doi.org/10.1090/S1088-4173-09-00195-7
- MathSciNet review: 2511916