Jørgensen number and arithmeticity
Author:
Jason Callahan
Journal:
Conform. Geom. Dyn. 13 (2009), 160-186
MSC (2000):
Primary 30F40; Secondary 57M05, 57M25, 57M50
DOI:
https://doi.org/10.1090/S1088-4173-09-00196-9
Published electronically:
July 23, 2009
MathSciNet review:
2525101
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Jørgensen number of a rank-two non-elementary Kleinian group is
![$\displaystyle J(\Gamma) = \inf\{\vert\mathrm{tr}^2 X - 4\vert + \vert\mathrm{tr} [X, Y] - 2\vert : \langle X, Y \rangle = \Gamma \}. $](/ecgd/2009-13-09/S1088-4173-09-00196-9/gif-abstract0/img2.gif)




- 1. Colin C. Adams, Waist size for cusps in hyperbolic 3-manifolds, Topology 41 (2002), no. 2, 257–270. MR 1876890, https://doi.org/10.1016/S0040-9383(00)00034-3
- 2. M. D. Baker and A. W. Reid, Arithmetic knots in closed 3-manifolds, J. Knot Theory Ramifications 11 (2002), no. 6, 903–920. Knots 2000 Korea, Vol. 3 (Yongpyong). MR 1936242, https://doi.org/10.1142/S0218216502002049
- 3. Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
- 4. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
- 5.
J. Callahan.
The Arithmetic and Geometry of Two-Generator Kleinian Groups.
PhD thesis, The University of Texas at Austin, 2009. - 6. M. D. E. Conder, C. Maclachlan, G. J. Martin, and E. A. O’Brien, 2-generator arithmetic Kleinian groups. III, Math. Scand. 90 (2002), no. 2, 161–179. MR 1895609, https://doi.org/10.7146/math.scand.a-14368
- 7. F. W. Gehring, J. P. Gilman, and G. J. Martin, Kleinian groups with real parameters, Commun. Contemp. Math. 3 (2001), no. 2, 163–186. MR 1831927, https://doi.org/10.1142/S0219199701000342
- 8. F. W. Gehring, C. Maclachlan, and G. J. Martin, Two-generator arithmetic Kleinian groups. II, Bull. London Math. Soc. 30 (1998), no. 3, 258–266. MR 1608106, https://doi.org/10.1112/S0024609397004359
- 9. F. W. Gehring, C. Maclachlan, G. J. Martin, and A. W. Reid, Arithmeticity, discreteness and volume, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3611–3643. MR 1433117, https://doi.org/10.1090/S0002-9947-97-01989-2
- 10. F. W. Gehring and G. J. Martin, Stability and extremality in Jørgensen’s inequality, Complex Variables Theory Appl. 12 (1989), no. 1-4, 277–282. MR 1040927, https://doi.org/10.1080/17476938908814372
- 11.
F. González-Acuña and A. Ramırez.
Jørgensen subgroups of the Picard group.
Osaka J. Math., 44(2):471-482, 2007. - 12. Leon Greenberg, Maximal Fuchsian groups, Bull. Amer. Math. Soc. 69 (1963), 569–573. MR 148620, https://doi.org/10.1090/S0002-9904-1963-11001-0
- 13. Fritz Grunewald and Joachim Schwermer, Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space, Trans. Amer. Math. Soc. 335 (1993), no. 1, 47–78. MR 1020042, https://doi.org/10.1090/S0002-9947-1993-1020042-6
- 14. Craig D. Hodgson and Jeffrey R. Weeks, Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experiment. Math. 3 (1994), no. 4, 261–274. MR 1341719
- 15. Troels Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739–749. MR 427627, https://doi.org/10.2307/2373814
- 16. Troels Jørgensen and Maire Kiikka, Some extreme discrete groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 245–248. MR 0399452
- 17. Changjun Li, Makito Oichi, and Hiroki Sato, Jørgensen groups of parabolic type II (countably infinite case), Osaka J. Math. 41 (2004), no. 3, 491–506. MR 2107659
- 18. Changjun Li, Makito Oichi, and Hiroki Sato, Jørgensen groups of parabolic type I (finite case), Comput. Methods Funct. Theory 5 (2005), no. 2, 409–430. MR 2205423, https://doi.org/10.1007/BF03321107
- 19. Changjun Li, Makito Oichi, and Hiroki Sato, Jørgensen groups of parabolic type III (uncountably infinite case), Kodai Math. J. 28 (2005), no. 2, 248–264. MR 2153913, https://doi.org/10.2996/kmj/1123767006
- 20. C. Maclachlan and G. J. Martin, 2-generator arithmetic Kleinian groups, J. Reine Angew. Math. 511 (1999), 95–117. MR 1695792, https://doi.org/10.1515/crll.1999.511.95
- 21. C. Maclachlan and A. W. Reid, Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 2, 251–257. MR 898145, https://doi.org/10.1017/S030500410006727X
- 22. Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957
- 23. Bernard Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- 24. Robert Riley, Parabolic representations of knot groups. I, Proc. London Math. Soc. (3) 24 (1972), 217–242. MR 0300267, https://doi.org/10.1112/plms/s3-24.2.217
- 25. Robert Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281–288. MR 412416, https://doi.org/10.1017/S0305004100051094
- 26. Hiroki Sato, One-parameter families of extreme discrete groups for Jørgensen’s inequality, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998) Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 271–287. MR 1759686, https://doi.org/10.1090/conm/256/04013
- 27. Hiroki Sato, The Jørgensen number of the Whitehead link group, Bol. Soc. Mat. Mexicana (3) 10 (2004), no. Special Issue, 495–502. MR 2199365
- 28. Hiroki Sato and Ryuji Yamada, Some extreme Kleinian groups for Jørgensen’s inequality, Rep. Fac. Sci. Shizuoka Univ. 27 (1993), 1–8. MR 1217933
- 29. Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, https://doi.org/10.1016/0001-8708(71)90027-2
- 30. Kisao Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), no. 1, 91–106. MR 429744, https://doi.org/10.2969/jmsj/02910091
- 31. The PARI Group, Bordeaux. XSPARI/GP, version 2.1.7, 2005. available from http://pari. math.u-bordeaux.fr/.
- 32.
J. Weeks.
SnapPea: a computer program for creating and studying hyperbolic 3-manifolds.
Available at www.geometrygames.org/SnapPea.
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30F40, 57M05, 57M25, 57M50
Retrieve articles in all journals with MSC (2000): 30F40, 57M05, 57M25, 57M50
Additional Information
Jason Callahan
Affiliation:
Department of Mathematics, The University of Texas at Austin, 1 University Station C1200, Austin, Texas 78712 and Department of Mathematics, St. Edward’s University, 3001 South Congress Avenue, Austin, Texas 78704
Email:
callahan@math.utexas.edu; jasonc@stedwards.edu
DOI:
https://doi.org/10.1090/S1088-4173-09-00196-9
Received by editor(s):
May 14, 2009
Published electronically:
July 23, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.