Wild knots in higher dimensions as limit sets of Kleinian groups
HTML articles powered by AMS MathViewer
- by Margareta Boege, Gabriela Hinojosa and Alberto Verjovsky PDF
- Conform. Geom. Dyn. 13 (2009), 197-216 Request permission
Abstract:
In this paper we construct infinitely many wild knots, $\mathbb {S}^{n}\hookrightarrow \mathbb {S}^{n+2}$, for $n=1,2,3,4$ and $5$, each of which is a limit set of a geometrically finite Kleinian group. We also describe some of their properties.References
- Lars V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR 725161
- E. Artin. Zur Isotopie zweidimensionalen Flächen im $R_{4}$, Abh. Math. Sem. Univ. Hamburg (1926), 174-177.
- W. R. Brakes, Quickly unknotting topological spheres, Proc. Amer. Math. Soc. 72 (1978), no. 2, 413–416. MR 507349, DOI 10.1090/S0002-9939-1978-0507349-0
- B. N. Apanasov and A. V. Tetenov, Nontrivial cobordisms with geometrically finite hyperbolic structures, J. Differential Geom. 28 (1988), no. 3, 407–422. MR 965222, DOI 10.4310/jdg/1214442471
- I. Belegradek, Some curious Kleinian groups and hyperbolic $5$-manifolds, Transform. Groups 2 (1997), no. 1, 3–29. MR 1439244, DOI 10.1007/BF01234629
- M. Boege, G. Hinojosa, A. Verjovsky. Any smooth knot $\mathbb {S}^{n}\hookrightarrow \mathbb {R}^{n+2}$ is isotopic to a cubic knot contained in the canonical scaffolding of $\mathbb {R}^{n+2}$. http://arxiv.org/abs/0905.4053v1.
- B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), no. 2, 245–317. MR 1218098, DOI 10.1006/jfan.1993.1052
- David B. A. Epstein and Carlo Petronio, An exposition of Poincaré’s polyhedron theorem, Enseign. Math. (2) 40 (1994), no. 1-2, 113–170. MR 1279064
- M. Gromov, H. B. Lawson Jr., and W. Thurston, Hyperbolic $4$-manifolds and conformally flat $3$-manifolds, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 27–45 (1989). MR 1001446, DOI 10.1007/BF02698540
- Robert Fricke and Felix Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bande 3, vol. 4, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1965 (German). MR 0183872
- William M. Goldman, Conformally flat manifolds with nilpotent holonomy and the uniformization problem for $3$-manifolds, Trans. Amer. Math. Soc. 278 (1983), no. 2, 573–583. MR 701512, DOI 10.1090/S0002-9947-1983-0701512-8
- Francisco Dutenhefner and Nikolay Gusevskii, Complex hyperbolic Kleinian groups with limit set a wild knot, Topology 43 (2004), no. 3, 677–696. MR 2041637, DOI 10.1016/j.top.2003.10.004
- Gabriela Hinojosa, Wild knots as limit sets of Kleinian groups, Geometry and dynamics, Contemp. Math., vol. 389, Amer. Math. Soc., Providence, RI, 2005, pp. 125–139. MR 2181962, DOI 10.1090/conm/389/07276
- Gabriela Hinojosa, A wild knot $\Bbb S^2\hookrightarrow \Bbb S^4$ as limit set of a Kleinian group: Indra’s pearls in four dimensions, J. Knot Theory Ramifications 16 (2007), no. 8, 1083–1110. MR 2364891, DOI 10.1142/S0218216507005610
- Gabriela Hinojosa and Alberto Verjovsky, Homogeneity of dynamically defined wild knots, Rev. Mat. Complut. 19 (2006), no. 1, 101–111. MR 2219822, DOI 10.5209/rev_{R}EMA.2006.v19.n1.16633
- Morris W. Hirsch, Smooth regular neighborhoods, Ann. of Math. (2) 76 (1962), 524–530. MR 149492, DOI 10.2307/1970372
- M. Kapovich. Topological Aspects of Kleinian Groups in Several Dimensions. MSRI Preprint, 1992. Updated in 2002, submitted to proceedings of 3-rd Ahlfors-Bers Colloquium.
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1792613
- Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575–582. MR 242165, DOI 10.2307/1970652
- R. S. Kulkarni, Groups with domains of discontinuity, Math. Ann. 237 (1978), no. 3, 253–272. MR 508756, DOI 10.1007/BF01420180
- Ravi S. Kulkarni, Conformal structures and Möbius structures, Conformal geometry (Bonn, 1985/1986) Aspects Math., E12, Friedr. Vieweg, Braunschweig, 1988, pp. 1–39. MR 979787
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Barry Mazur, The definition of equivalence of combinatorial imbeddings, Inst. Hautes Études Sci. Publ. Math. 1959 (1959), 97–109. MR 116346
- D. R. McMillan Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67 (1961), 510–514. MR 131280, DOI 10.1090/S0002-9904-1961-10662-9
- David Mumford, Caroline Series, and David Wright, Indra’s pearls, Cambridge University Press, New York, 2002. The vision of Felix Klein. MR 1913879, DOI 10.1017/CBO9781107050051.024
- Valentin Poénaru, What is $\dots$ an infinite swindle?, Notices Amer. Math. Soc. 54 (2007), no. 5, 619–622. MR 2311984
- Henri Poincaré, Papers on Fuchsian functions, Springer-Verlag, New York, 1985. Translated from the French and with an introduction by John Stillwell. MR 809181, DOI 10.1007/978-1-4612-5148-4
- Leonid Potyagailo and Ernest Vinberg, On right-angled reflection groups in hyperbolic spaces, Comment. Math. Helv. 80 (2005), no. 1, 63–73. MR 2130566, DOI 10.4171/CMH/4
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- T. Benny Rushing, Topological embeddings, Pure and Applied Mathematics, Vol. 52, Academic Press, New York-London, 1973. MR 0348752
- Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. MR 494062, DOI 10.1112/jlms/s2-17.3.555
- John Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490–503. MR 149458, DOI 10.2307/1970127
- W. P. Thurston. The geometry and topology of 3-manifolds. Notes. Princeton University 1976-1979.
- Alberto Verjovsky, Sistemas de Anosov, Monografías del Instituto de Matemática y Ciencias Afines [Monographs of the Institute of Mathematics and Related Sciences], vol. 9, Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999 (Spanish). A paper from the 12th Escuela Latinoamericana de Matemáticas (XII-ELAM) held in Lima, June 28-July 3, 1999. MR 2009572
- H. E. Winkelnkemper, Manifolds as open books, Bull. Amer. Math. Soc. 79 (1973), 45–51. MR 310912, DOI 10.1090/S0002-9904-1973-13085-X
- E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501–526. MR 160218, DOI 10.2307/1970538
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Additional Information
- Margareta Boege
- Affiliation: Instituto de Matemáticas, Unidad Cuernavaca, Universidad Nacional Autónoma de México. Av. Universidad s/n, Col. Lomas de Chamilpa, Cuernavaca, Morelos, México 62209
- Email: margaret@matcuer.unam.mx
- Gabriela Hinojosa
- Affiliation: Facultad de Ciencias, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa. Cuernavaca, Morelos, México 62209
- Email: gabriela@buzon.uaem.mx
- Alberto Verjovsky
- Affiliation: Instituto de Matemáticas, Unidad Cuernavaca, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Lomas de Chamilpa, Cuernavaca, Morelos, México 62209
- ORCID: setImmediate$0.21247121077052256$2
- Email: alberto@matcuer.unam.mx
- Received by editor(s): May 6, 2008
- Published electronically: September 9, 2009
- Additional Notes: The first author’s research was partially supported by PFAMU-DGAPA
The second author’s research was partially supported by CONACyT CB-2007/83885
The third author’s research was partially supported by CONACyT proyecto U1 55084, and PAPIIT (Universidad Nacional Autónoma de México) #IN102108 - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 13 (2009), 197-216
- MSC (2000): Primary 57M30; Secondary 57M45, 57Q45, 30F40
- DOI: https://doi.org/10.1090/S1088-4173-09-00198-2
- MathSciNet review: 2540704