Fiber structure and local coordinates for the Teichmüller space of a bordered Riemann surface
HTML articles powered by AMS MathViewer
- by David Radnell and Eric Schippers
- Conform. Geom. Dyn. 14 (2010), 14-34
- DOI: https://doi.org/10.1090/S1088-4173-10-00206-7
- Published electronically: February 11, 2010
- PDF | Request permission
Abstract:
We show that the infinite-dimensional Teichmüller space of a Riemann surface whose boundary consists of $n$ closed curves is a holomorphic fiber space over the Teichmüller space of an $n$-punctured surface. Each fiber is a complex Banach manifold modeled on a two-dimensional extension of the universal Teichmüller space. The local model of the fiber, together with the coordinates from internal Schiffer variation, provides new holomorphic local coordinates for the infinite-dimensional Teichmüller space.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911, DOI 10.1515/9781400874538
- Soo Bong Chae, Holomorphy and calculus in normed spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 92, Marcel Dekker, Inc., New York, 1985. With an appendix by Angus E. Taylor. MR 788158
- Frederick P. Gardiner, Schiffer’s interior variation and quasiconformal mapping, Duke Math. J. 42 (1975), 371–380. MR 382637
- K.-G. Grosse-Erdmann, A weak criterion for vector-valued holomorphy, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 399–411. MR 2040581, DOI 10.1017/S0305004103007254
- John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR 2245223
- Serge Lang, Differential manifolds, 2nd ed., Springer-Verlag, New York, 1985. MR 772023, DOI 10.1007/978-1-4684-0265-0
- Olli Lehto, Quasiconformal mappings and singular integrals, Symposia Mathematica, Vol. XVIII, Academic Press, London, 1976, pp. 429–453. (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INDAM, Rome, 1974),. MR 0492241
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Jorge Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR 842435
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291
- Radnell, D., Schiffer Variation in Teichmüller space, Determinant Line Bundles and Modular Functors, PhD Thesis, Rutgers University, New Brunswick, NJ, 2003.
- David Radnell and Eric Schippers, Quasisymmetric sewing in rigged Teichmüller space, Commun. Contemp. Math. 8 (2006), no. 4, 481–534. MR 2258875, DOI 10.1142/S0219199706002210
- David Radnell and Eric Schippers, A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface, J. Anal. Math. 108 (2009), 277–291. MR 2544761, DOI 10.1007/s11854-009-0025-0
- David Radnell and Eric Schippers, A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface, J. Anal. Math. 108 (2009), 277–291. MR 2544761, DOI 10.1007/s11854-009-0025-0
- Graeme Segal, The definition of conformal field theory, Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp. 421–577. MR 2079383
- Lee-Peng Teo, The Velling-Kirillov metric on the universal Teichmüller curve, J. Anal. Math. 93 (2004), 271–307. MR 2110331, DOI 10.1007/BF02789310
- Leon A. Takhtajan and Lee-Peng Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861, viii+119. MR 2251887, DOI 10.1090/memo/0861
- Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), no. 2, 347–355. MR 1037218, DOI 10.1090/S0002-9939-1991-1037218-8
Bibliographic Information
- David Radnell
- Affiliation: Department of Mathematics and Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
- Email: dradnell@aus.edu
- Eric Schippers
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- MR Author ID: 651639
- Email: eric_schippers@umanitoba.ca
- Received by editor(s): June 17, 2009
- Published electronically: February 11, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 14 (2010), 14-34
- MSC (2010): Primary 30F60, 58B12; Secondary 81T40
- DOI: https://doi.org/10.1090/S1088-4173-10-00206-7
- MathSciNet review: 2593332