## Fiber structure and local coordinates for the Teichmüller space of a bordered Riemann surface

HTML articles powered by AMS MathViewer

- by David Radnell and Eric Schippers PDF
- Conform. Geom. Dyn.
**14**(2010), 14-34 Request permission

## Abstract:

We show that the infinite-dimensional Teichmüller space of a Riemann surface whose boundary consists of $n$ closed curves is a holomorphic fiber space over the Teichmüller space of an $n$-punctured surface. Each fiber is a complex Banach manifold modeled on a two-dimensional extension of the universal Teichmüller space. The local model of the fiber, together with the coordinates from internal Schiffer variation, provides new holomorphic local coordinates for the infinite-dimensional Teichmüller space.## References

- Lars V. Ahlfors and Leo Sario,
*Riemann surfaces*, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR**0114911**, DOI 10.1515/9781400874538 - Soo Bong Chae,
*Holomorphy and calculus in normed spaces*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 92, Marcel Dekker, Inc., New York, 1985. With an appendix by Angus E. Taylor. MR**788158** - Frederick P. Gardiner,
*Schiffer’s interior variation and quasiconformal mapping*, Duke Math. J.**42**(1975), 371–380. MR**382637** - K.-G. Grosse-Erdmann,
*A weak criterion for vector-valued holomorphy*, Math. Proc. Cambridge Philos. Soc.**136**(2004), no. 2, 399–411. MR**2040581**, DOI 10.1017/S0305004103007254 - John Hamal Hubbard,
*Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1*, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR**2245223** - Serge Lang,
*Differential manifolds*, 2nd ed., Springer-Verlag, New York, 1985. MR**772023**, DOI 10.1007/978-1-4684-0265-0 - Olli Lehto,
*Quasiconformal mappings and singular integrals*, Symposia Mathematica, Vol. XVIII (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INDAM, Rome, 1974) Academic Press, London, 1976, pp. 429–453. MR**0492241** - Olli Lehto,
*Univalent functions and Teichmüller spaces*, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR**867407**, DOI 10.1007/978-1-4613-8652-0 - O. Lehto and K. I. Virtanen,
*Quasiconformal mappings in the plane*, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR**0344463**, DOI 10.1007/978-3-642-65513-5 - Jorge Mujica,
*Complex analysis in Banach spaces*, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR**842435** - Subhashis Nag,
*The complex analytic theory of Teichmüller spaces*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR**927291** - Radnell, D.,
*Schiffer Variation in Teichmüller space, Determinant Line Bundles and Modular Functors*, PhD Thesis, Rutgers University, New Brunswick, NJ, 2003. - David Radnell and Eric Schippers,
*Quasisymmetric sewing in rigged Teichmüller space*, Commun. Contemp. Math.**8**(2006), no. 4, 481–534. MR**2258875**, DOI 10.1142/S0219199706002210 - David Radnell and Eric Schippers,
*A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface*, J. Anal. Math.**108**(2009), 277–291. MR**2544761**, DOI 10.1007/s11854-009-0025-0 - David Radnell and Eric Schippers,
*A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface*, J. Anal. Math.**108**(2009), 277–291. MR**2544761**, DOI 10.1007/s11854-009-0025-0 - Graeme Segal,
*The definition of conformal field theory*, Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp. 421–577. MR**2079383** - Lee-Peng Teo,
*The Velling-Kirillov metric on the universal Teichmüller curve*, J. Anal. Math.**93**(2004), 271–307. MR**2110331**, DOI 10.1007/BF02789310 - Leon A. Takhtajan and Lee-Peng Teo,
*Weil-Petersson metric on the universal Teichmüller space*, Mem. Amer. Math. Soc.**183**(2006), no. 861, viii+119. MR**2251887**, DOI 10.1090/memo/0861 - Zbigniew Slodkowski,
*Holomorphic motions and polynomial hulls*, Proc. Amer. Math. Soc.**111**(1991), no. 2, 347–355. MR**1037218**, DOI 10.1090/S0002-9939-1991-1037218-8

## Additional Information

**David Radnell**- Affiliation: Department of Mathematics and Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
- Email: dradnell@aus.edu
**Eric Schippers**- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- MR Author ID: 651639
- Email: eric_schippers@umanitoba.ca
- Received by editor(s): June 17, 2009
- Published electronically: February 11, 2010
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn.
**14**(2010), 14-34 - MSC (2010): Primary 30F60, 58B12; Secondary 81T40
- DOI: https://doi.org/10.1090/S1088-4173-10-00206-7
- MathSciNet review: 2593332