Checking atomicity of conformal ending measures for Kleinian groups
HTML articles powered by AMS MathViewer
- by Kurt Falk, Katsuhiko Matsuzaki and Bernd O. Stratmann
- Conform. Geom. Dyn. 14 (2010), 167-183
- DOI: https://doi.org/10.1090/S1088-4173-2010-00209-2
- Published electronically: June 30, 2010
- PDF | Request permission
Abstract:
In this paper we address questions of continuity and atomicity of conformal ending measures for arbitrary non-elementary Kleinian groups. We give sufficient conditions under which such ending measures are purely atomic. Moreover, we will show that if a conformal ending measure has an atom which is contained in the big horospherical limit set, then this atom has to be a parabolic fixed point. Also, we give detailed discussions of non-trivial examples for purely atomic as well as for non-atomic conformal ending measures.References
- James W. Anderson, Kurt Falk, and Pekka Tukia, Conformal measures associated to ends of hyperbolic $n$-manifolds, Q. J. Math. 58 (2007), no. 1, 1–15. MR 2305045, DOI 10.1093/qmath/hal019
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Alan F. Beardon and Bernard Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1–12. MR 333164, DOI 10.1007/BF02392106
- Christopher J. Bishop, On a theorem of Beardon and Maskit, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 383–388. MR 1404092
- Christopher J. Bishop and Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), no. 1, 1–39. MR 1484767, DOI 10.1007/BF02392718
- Robert Brooks, The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math. 357 (1985), 101–114. MR 783536, DOI 10.1515/crll.1985.357.101
- Kurt Falk and Bernd O. Stratmann, Remarks on Hausdorff dimensions for transient limit sets of Kleinian groups, Tohoku Math. J. (2) 56 (2004), no. 4, 571–582. MR 2097162
- Kurt Falk and Pekka Tukia, A note on Patterson measures, Kodai Math. J. 29 (2006), no. 2, 227–236. MR 2247432, DOI 10.2996/kmj/1151936437
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Katsuhiko Matsuzaki, Conservative action of Kleinian groups with respect to the Patterson-Sullivan measure, Comput. Methods Funct. Theory 2 (2002), no. 2, [On table of contents: 2004], 469–479. MR 2038133, DOI 10.1007/BF03321860
- Katsuhiko Matsuzaki and Masahiko Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1638795
- Katsuhiko Matsuzaki and Yasuhiro Yabuki, The Patterson-Sullivan measure and proper conjugation for Kleinian groups of divergence type, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 657–665. MR 2486788, DOI 10.1017/S0143385708080267
- Shunsuke Morosawa, Invariant subsets of the limit set for a Fuchsian group, Tohoku Math. J. (2) 42 (1990), no. 3, 429–437. MR 1066671, DOI 10.2748/tmj/1178227620
- Peter J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. MR 1041575, DOI 10.1017/CBO9780511600678
- John R. Parker and Bernd O. Stratmann, Kleinian groups with singly cusped parabolic fixed points, Kodai Math. J. 24 (2001), no. 2, 169–206. MR 1839255, DOI 10.2996/kmj/1106168782
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- Bernd O. Stratmann, The exponent of convergence of Kleinian groups; on a theorem of Bishop and Jones, Fractal geometry and stochastics III, Progr. Probab., vol. 57, Birkhäuser, Basel, 2004, pp. 93–107. MR 2087134
- Bernd O. Stratmann and Mariusz Urbański, Pseudo-Markov systems and infinitely generated Schottky groups, Amer. J. Math. 129 (2007), no. 4, 1019–1062. MR 2343382, DOI 10.1353/ajm.2007.0028
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586, DOI 10.1007/BF02684773
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833
- Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327–351. MR 882827
- Pekka Tukia, Conservative action and the horospheric limit set, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 387–394. MR 1469798
Bibliographic Information
- Kurt Falk
- Affiliation: Fachbereich 3 - Mathematik und Informatik, Universität Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
- Email: khf@math.uni-bremen.de
- Katsuhiko Matsuzaki
- Affiliation: Department of Mathematics, School of Education, Waseda University, Shinjuku, Tokyo 169-8050, Japan
- Email: matsuzak@waseda.jp
- Bernd O. Stratmann
- Affiliation: Fachbereich 3 - Mathematik und Informatik, Universität Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
- Email: bos@math.uni-bremen.de
- Received by editor(s): March 18, 2009
- Published electronically: June 30, 2010
- Additional Notes: The first author was supported by the Science Foundation Ireland
The second author was supported by JSPS Grant B #20340030 - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 14 (2010), 167-183
- MSC (2010): Primary 30F40, 37F35; Secondary 37F30, 28A80
- DOI: https://doi.org/10.1090/S1088-4173-2010-00209-2
- MathSciNet review: 2660143