Combinatorial rigidity for some infinitely renormalizable unicritical polynomials
HTML articles powered by AMS MathViewer
- by Davoud Cheraghi
- Conform. Geom. Dyn. 14 (2010), 219-255
- DOI: https://doi.org/10.1090/S1088-4173-2010-00216-X
- Published electronically: September 15, 2010
- PDF | Request permission
Abstract:
Here we prove that infinitely renormalizable unicritical polynomials $P_c:z \mapsto z^d+c$, with $c\in \mathbb {C}$, satisfying a priori bounds and a certain “combinatorial” condition are combinatorially rigid. This implies the local connectivity of the connectedness loci (the Mandelbrot set when $d=2$) at the corresponding parameters.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Artur Avila, Jeremy Kahn, Mikhail Lyubich, and Weixiao Shen, Combinatorial rigidity for unicritical polynomials, Ann. of Math. (2) 170 (2009), no. 2, 783–797. MR 2552107, DOI 10.4007/annals.2009.170.783
- Bodil Branner, Puzzles and para-puzzles of quadratic and cubic polynomials, Complex dynamical systems (Cincinnati, OH, 1994) Proc. Sympos. Appl. Math., vol. 49, Amer. Math. Soc., Providence, RI, 1994, pp. 31–69. MR 1315533, DOI 10.1090/psapm/049/1315533
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, II, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84-85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984-1985.
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Adrien Douady, Descriptions of compact sets in $\textbf {C}$, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 429–465. MR 1215973
- J. Graczyk and G. Świa̧tek, The real Fatou conjecture, Annals of Mathematics Studies, vol. 144, Princeton University Press, Princeton, NJ, 1998.
- J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 467–511. MR 1215974
- Yunping Jiang, Infinitely renormalizable quadratic polynomials, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5077–5091. MR 1675198, DOI 10.1090/S0002-9947-00-02514-9
- J. Kahn, A priori bounds for some infinitely renormalizable maps: I. bounded primitive combinatorics, Preprint, IMS at Stony Brook, 2006/05.
- Jeremy Kahn and Mikhail Lyubich, A priori bounds for some infinitely renormalizable quadratics. II. Decorations, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 1, 57–84 (English, with English and French summaries). MR 2423310, DOI 10.24033/asens.2063
- Jeremy Kahn and Mikhail Lyubich, Local connectivity of Julia sets for unicritical polynomials, Ann. of Math. (2) 170 (2009), no. 1, 413–426. MR 2521120, DOI 10.4007/annals.2009.170.413
- Jeremy Kahn and Mikhail Lyubich, A priori bounds for some infinitely renormalizable quadratics. III. Molecules, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 229–254. MR 2508259, DOI 10.1201/b10617-7
- O. Kozlovski, W. Shen, and S. van Strien, Rigidity for real polynomials, Ann. of Math. (2) 165 (2007), no. 3, 749–841. MR 2335796, DOI 10.4007/annals.2007.165.749
- Genadi Levin, Multipliers of periodic orbits of quadratic polynomials and the parameter plane, Israel J. Math. 170 (2009), 285–315. MR 2506328, DOI 10.1007/s11856-009-0030-0
- Genadi Levin and Sebastian van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. (2) 147 (1998), no. 3, 471–541. MR 1637647, DOI 10.2307/120958
- Mikhail Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185–247, 247–297. MR 1459261, DOI 10.1007/BF02392694
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- John Milnor, Local connectivity of Julia sets: expository lectures, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67–116. MR 1765085
- John Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account, Astérisque 261 (2000), xiii, 277–333 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755445
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Dierk Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 477–517. MR 2112117, DOI 10.1090/pspum/072.1/2112117
- Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), no. 2, 347–355. MR 1037218, DOI 10.1090/S0002-9939-1991-1037218-8
- Kurt Strebel, On the maximal dilation of quasiconformal mappings, Proc. Amer. Math. Soc. 6 (1955), 903–909. MR 73702, DOI 10.1090/S0002-9939-1955-0073702-X
- Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417–466. MR 1184622
Bibliographic Information
- Davoud Cheraghi
- Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794
- Address at time of publication: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- Email: d.cheraghi@warwick.ac.uk
- Received by editor(s): April 20, 2008
- Received by editor(s) in revised form: December 28, 2009, and June 2, 2010
- Published electronically: September 15, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 14 (2010), 219-255
- MSC (2010): Primary 37F45; Secondary 37F25, 37F30
- DOI: https://doi.org/10.1090/S1088-4173-2010-00216-X
- MathSciNet review: 2719786