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ON DYNAMICAL TEICHMÜLLER SPACES

CARLOS CABRERA AND PETER MAKIENKO

Abstract. Following ideas from a preprint of the second author (see Auto-
morphisms of a rational function with disconnected Julia set, Orsay, Preprint,

03 1992), we investigate relations of dynamical Teichmüller spaces with dy-
namical objects. We also establish some connections with the theory of de-
formations of inverse limits and laminations in holomorphic dynamics (see J.
Diff. Geom. 47 (1997), 17–94).

1. Introduction

Sullivan introduced the study of a dynamical Teichmüller space, which we de-
note by T1(R), associated to a rational function R. The space of orbits of T1(R),
under the action of an associated modular group Mod1(R), coincides with the space
QC(R) of quasiconformal deformations of R. We modify Sullivan’s definition to get
another Teichmüller space T2(R), with its corresponding modular group Mod2(R).
In this situation, the J-stability component is the space of orbits of T2(R), under
the action of Mod2(R). When R is hyperbolic, the J-stability component is the
hyperbolic component of R.

There are natural inclusions of the space T1(R) into T2(R), and from the group
Mod1(R) into Mod2(R). We find that properties of these inclusions are related
to the dynamics of R. With this in hand, we can establish relations between the
dynamics of R and topological properties of T2(R).

When the Julia set of R is totally disconnected, the space T2(R) has a laminated
structure. In this way, we also realize T2(R) as the space of deformations of the
natural extension of R. The structure of the paper is as follows.

In Section 2, we recall basic definitions and facts of the classical Teichmüller
space T1(R).

In Section 3, we introduce T2(R) and show that, as in the case of T1(R), it is
a complete metric space. In Theorem 3.5, we establish characterizations for the
path connectivity of T2(R). Using this, we prove Theorem 3.7 stating that, when
R is a polynomial, the connectivity of the Julia set J(R) is equivalent to the path
connectivity of T2(R).

In Section 4, we restrict to the case where J(R) is homeomorphic to a Cantor
set. In this case, T2(R) is a trivial product of T1(R) times a totally disconnected
space. We finish the section giving a characterization of the property that J(R) is
homeomorphic to a Cantor set in terms of properties of T2(R).
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Finally, in Section 5, we construct a realization of T2(R) as the space of defor-
mations of the natural extension of R.

2. The Teichmüller space T1(R)

Given a rational map R, let us define the space T1(R) = T (SR)×BR, where SR

is a Riemann surface associated to the Fatou set F (R), T (SR) denotes the classical
Teichmüller space of SR, and BR is the space of invariant Beltrami differentials,
defined on the Julia set J(R), which are compatible with the dynamics of R. That
is, BR is the space of measurable (1,−1) forms μ with L∞ norm bounded by 1,
satisfying the conditions that μ is 0 outside the Julia set J(R) and R∗(μ) = μ. For
a more detailed account of the definitions, see [5] and [6].

An equivalent way to define T1(R) is as the set of isotopy classes of pairs 〈[R1], [φ]〉
where φ is a quasiconformal conjugation of R to the rational map R1. The first
modular group Mod1(R), is the group of all isotopy classes of quasiconformal home-
omorphisms of C commuting with R. The group Mod1(R) acts on T1(R) with the
action given by

[φ]〈[g], [ψ]〉 = 〈[g], [ψ ◦ φ−1]〉.
A theorem due to Sullivan and McMullen states that Mod1(R) acts on T1(R) as a
group of isometries; for more details, see [5] and [6]. The formula T1(R)/Mod1(R) =
QC(R), where QC(R) is the space of quasiconformal deformations of R, will play
an important role in what follows.

3. The space T2(R)

We will define a Teichmüller space that generalizes the formula

T1(R)/Mod1(R) = QC(R)

for the J-stability component of R.

Definition 3.1. Let (X, d1) and (Y, d2) be metric spaces, a map φ : X → Y is
called K-quasiconformal, in Pesin’s sense if, for every x0 ∈ X,

lim sup
r→0

{
sup{|φ(x0)− φ(x1)| : |x0 − x1| < r}
inf{|φ(x0)− φ(x1)| : |x0 − x1| < r}

}
≤ K.

Let us recall that two rational maps R1 and R2 are J-equivalent, if there is a
homeomorphism h : J(R1) → J(R2), which is quasiconformal in Pesin’s sense and
conjugates R1 to R2.

Given a family of maps {Rw} depending holomorphically on a parameter w ∈ W ,
a map Rw0

in {Rw} is called J-stable if there is a neighborhood V of w0 such that
Rw is J-equivalent to Rw0

for all w ∈ V , and the conjugating homeomorphisms
depend holomorphically on w.

We denote by QCJ (R), the J-stability component of a rational map R. This is
the path connected component of the J-equivalence class of R containing R. In [4],
Mañe, Sad and Sullivan proved that for every holomorphic family of rational maps,
the union of the J-stability components is open and dense. When R is hyperbolic,
an application of the λ-Lemma, for holomorphic motions around J(R), shows that
QCJ (R) coincides with Hyp(R), the hyperbolic component of R.
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Let R be a rational map. We define the space Xn(R) as the set of pairs (h, U),
where U is an open neighborhood of the Julia set J(R) and h : U → C is a
quasiconformal embedding such that

h ◦R ◦ h−1 = Rh

is the restriction of the rational map, with degR ≤ degRh ≤ n, wherever the
conjugacy is well defined.

We say that (h1, U1) ∼ (h2, U2) in Xn(R) if, and only if, there exist open sets V1

and V2, satisfying Vi ⊂ U1∩U2, J(R) ⊂ Vi, for i = 1, 2, and a Möbius transformation
γ : C → C such that the following diagram commutes

V1
h1−−−−→ C

F

⏐⏐� ⏐⏐�γ

V2
h2−−−−→ C

and so that F is a map homotopic to the identity, with a homotopy that commutes
with R.

With this equivalence relation on Xn(R), we can take representatives (h, U)
such that, U has nice dynamical properties. For instance, if R is hyperbolic, we
can always choose U satisfying R−1(U) ⊂ U .

Following classical Teichmüller theory, the map γ would be a holomorphic map.
However, the next proposition justifies our definition. The arguments of the proof
of this proposition were given to the second named author by A. Eremenko; he also
pointed out that these arguments were already present in the work of Fatou. The
proposition, and a more general statement, was proved by Buff and Epstein in [1].
For completeness, we include the arguments of the proof here.

Proposition 3.2. Let R1 and R2 be rational maps, and let γ be a conformal map
that conjugates R1 to R2 around a neighborhood of J(R1). Then γ is the restriction
of a Möbius transformation.

Proof. Let U be the neighborhood around J(R1) on which γ is defined, and let
x be a point in U ; we define γx(R1(x)) = R2(γ(x)) and analytically continue
γ on R1(U) through arcs starting at R1(x). In this way, we obtain a possibly
multivalued extension γx of γ. By construction, γx also conjugates R1 to R2. Now
let y ∈ R−1

1 (R1(x)). Using the branch induced by y, we can define another extension
γy of γ by putting γy(R1(x)) = R2(γ(x)), and analytically continuing γy along
paths. Now, γx and γy coincide in U ; hence, by the Monodromy Theorem γx = γy
in all R1(U). Thus the extension of γ on R1(U) does not depend on branches
and is a well-defined holomorphic map. By induction, we extend γ to

⋃∞
m Rm

1 (U).
However, since U contains J(R1), the set

⋃∞
m Rm

1 (U) covers the whole Riemann
sphere, with the exception of at most two points. Hence, γ extends to a unimodal
holomorphic function defined on the sphere, so γ is a Möbius transformation. �

Let T2,n(R) = Xn(R)/ ∼. This definition generalizes the notion of the Te-
ichmüller space for a rational function. The space Xn(R) is extremely big. Note
that we can change the neighborhood U , arbitrarily in the pair (h, U), and still get
the same point in T2,n(R); for instance, by taking the restriction of h on a smaller
neighborhood. Consider the space T2,n(z

2) with n ≥ 3, this space contains all maps
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of the form z2 + λz3 for λ small enough. In this paper, we will restrict ourselves to
the case where n = deg(R) and, in this situation, we will omit the subindex n.

Two quasiconformal maps f : U → V and g : U ′ → V ′, defined on neighborhoods
of J(R), are equivalent f ∼ g, if there exist W ⊂ U ∩ U ′ on which f and g are
homotopic, with a homotopy that commutes with R. We can define a modular
group

Mod2(R) = {h : U → V q.c : h commutes with R, J(R) ⊂ U}/ ∼ .

Let R be a hyperbolic rational map. One can check that

Hyp(R) ∼= T2(R)/Mod2(R).

Note that the group Mod2(R) does not depend on n. For n > degR, the quo-
tient T2,n(R)/Mod2(R) forms a much bigger space containing Hyp(R); it also con-
tains other components, coming from higher degrees, arranged on the boundary of
Hyp(R). This construction allows us to consider, as basic points of the Teichmüller
space, points that “belong” to the boundary of other T2(R

′). For instance, z2 “be-
longs” to the boundary of the space T2(λz

3 + z2) for λ close to zero, but not zero.
In fact, the same is true for T1(λz

3 + z2). Nevertheless, the complete picture is yet
to be understood.

Now, let us define a third modular group Mod3(R), as the group of maps φ :
J(R) → J(R) which are quasiconformal in Pesin’s sense and commute with R.

One would be inclined to introduce a third Teichmüller space T3(R). A sensible
definition for this space is to consider the set of quasiconformal maps, in the sense
of Pesin, defined just in J(R) and commuting with R. However, it is not clear how
to relate this Teichmüller space with the usual quasiconformal theory. In other
words, in general, it is not clear if the natural map from Mod2(R) to Mod3(R)
is surjective. We can carry on this discussion when the map R is hyperbolic and,
more generally, when the Julia set is described as limits of telescopes with bounded
geometry. In these cases, every quasiconformal map defined on the Julia set and
inducing an isomorphism on telescopes can be extended to a quasiconformal map
defined on a neighborhood of J(R). For the definition of telescopes, see [7].

3.1. The space T2(R) is a complete metric space. Consider the formula,

d([f ], [g]) = inf logK(g−1 ◦ f),
where K denotes the distortion, and the infimum is taken over all representatives
of the maps f and g. This formula defines a pseudodistance on equivalence classes
of quasiconformal maps. In particular, it defines a distance on the space T1(R);
see [6].

Theorem 3.3. The Teichmüller pseudodistance on T2(R) defines a distance and,
with this distance, T2(R) is a complete metric space.

Proof. The map d clearly is positive, reflexive, and satisfies the triangle inequality.
Let us check that d is non-degenerate.

Let (φn, Un) be a sequence of representative points in T2(R), such that the
distortion K(φn) converges to 1. Note that the neighborhoods Un may converge to
the Julia set in the sense of Hausdorff. Hence, let us check that the maps φn are
eventually well defined over a neighborhood U of J(R). Then, we show that in U ,
the maps φn converge to a holomorphic map φ. This will finish the proof, because
if d([f ], [g]) = 0, then f and g are related by a holomorphic map.
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First let us assume that R is hyperbolic. Consider a repelling fixed point x0

of R in J(R), and a neighborhood W around x0. Choose W so that the diameter
diam(W ) is less than half the distance of x0 to the critical set of R. With this choice
the map R is injective in W . We extend the definition of φn to W using the formula
φn(R(z)) = R(φn(z)). The same construction works around all repelling periodic
points. Since the map is hyperbolic, this construction extends the definition of φn

to a neighborhood U of J(R), that only depends on the distance of J(R) to the
critical set. The space of quasiconformal maps with bounded distortion is compact,
then the maps φn converge to a holomorphic map on W .

When R is not hyperbolic, the argument is more subtle. Since there are critical
points on the boundary and nearby, the diameters of the corresponding neighbor-
hoods converge to zero. However, we still can extend the domains of φn. To do
so, take neighborhoods around the critical values in the Julia set and extend to the
critical points using the formula φn(R(z)) = R(φn(z)).

A slight modification in the argument above also shows that every Cauchy se-
quence in T2(R) converges; thus, T2(R) is a complete metric space. �

3.2. The homomorphisms α and β. Each class of maps in Mod1(R) belongs to
a class of maps in Mod2(R), and correspondingly in Mod3(R). So, we have the
following chain of homomorphisms

Mod1(R)
α−→ Mod2(R)

β−→ Mod3(R).

The whole sphere is a neighborhood of the Julia set, hence a class of maps in
T1(R) uniquely determines a class of maps in T2(R). This gives a map H : T1(R) →
T2(R). Let us remark that the map H, in general, is not injective nor surjective.
However, the properties of the map H are connected with the homomorphism α.

Proposition 3.4. For any rational map R, we have

H(T1(R)) ∼= T1(R)/ kerα.

Proof. Consider the following commutative diagram:

(*)

T1(R)
H−−−−→ T2(R)⏐⏐� ⏐⏐�

QC(R) −−−−→ QCJ(R)

We use the formulae T1(R)/Mod1(R) = QC(R) and T2(R)/Mod2(R) = QCJ (R).
Assume that H(φ1) = H(φ2), then there are neighborhoods U1, U2, V1, V2 and a
Möbius map γ such that the following diagram commutes

U1
φ1−−−−→ V1

F

⏐⏐� ⏐⏐�γ

U2
φ2−−−−→ V2

and, the map F = φ−1
2 ◦ γ ◦ φ1 is homotopic to Id in U , with a homotopy that

commutes with dynamics. If φ1 �= φ2 in T2(R), then the homotopy cannot be
extended to a global map in the plane. Since H(φ1) = H(φ2), the images of φ1

and φ2, under H, project to the same element in QCJ (R). By the commutativity
of the diagram (*), φ1 and φ2 project to the same element in QC(R). Hence, φ1
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and φ2 are related by a non-trivial element ψ ∈ Mod1(R) satisfying α(ψ) = Id. So
we have H(T1(R)) ∼= T1(R)/ kerα. �

When R is structurally stable, the map from QC(R) to QCJ(R), is an embedding
with dense image.

Theorem 3.5. Let R be a structurally stable rational map. The following condi-
tions are equivalent:

• The homomorphism α is surjective.
• The set H(T1(R)) is dense in T2(R).
• The space T2(R) is path connected.

Proof. Assume that the homomorphism α is surjective. Again, we make use of the
diagram (*). Given any ε > 0 and a point x ∈ T2(R), there exists y ∈ H(T1(R))
and φ ∈ Mod2(R) such that d(φ(y), x) < ε. Since α is surjective, there exists
ψ ∈ Mod1(R) such that α(ψ) = φ. But this implies that φ(y) ∈ H(T1(R)). Thus
the set H(T1(R)) is dense in T2(R).

Let us assume that H(T1(R)) is dense in T2(R), take two points x and y in
T2(R), then there are two sequences {xn} and {yn} in H(T1(R)) converging to x
and y, respectively. Since T1(R) is path connected, there is a sequence of paths γn
in H(T1(R)), with γn(0) = xn and γn(1) = yn. By analytical continuation along
γn, we can force the sequence {γn} to converge uniformly to a path γ, in T2(R),
connecting x with y. Hence T2(R) is path connected.

Let φ ∈ Mod2(R), if φ(H(T1(R))) ∩H(T1(R)) �= ∅, then φ ∈ α(Mod1(R)), and
φ(H(T1(R))) = H(T1(R)). On the other hand, if φ ∈ Mod2(R)\α(Mod1(R)), then
φ(H(T1(R))) ∩ H(T1(R)) = ∅. This shows that T2(R) is not path connected if
Mod2(R) \ α(Mod1(R)) �= ∅. In fact, T2(R) is decomposed into path connected
components by H(T1(R)) and its orbit under the action of Mod2(R)/α(Mod1(R)).

�

Example 3.6. Let us consider the map F (z) = zn, the Julia set is the unit circle
S
1. Let φ ∈ Mod2(F ), by composing with a rotation, we can assume that φ(1) = 1.

Any orientation preserving automorphism of the unit circle that fixes 1, and com-
mutes with the dynamics of F , must be the identity. This is so, since such an
automorphism must fix every point in the grand orbit of 1, and every grand orbit
is dense in S

1. Thus, φ restricted to S
1 is the identity. Taking a suitable homotopic

representative of φ, we can assume that φ leaves a tubular neighborhood of S1

invariant. The dynamics on this tubular neighborhood have a fundamental domain
homeomorphic to an annulus. Thus φ induces an oriented quasiconformal automor-
phism of this annulus. The group of oriented quasiconformal automorphisms of an
annulus is generated by a Dehn twist of angle 2π.

Let τ be this generator. Since φ commutes with dynamics, τ must be propagated
to the grand orbit of the fundamental annulus. A preimage of τ has the angle 2π/n.
A forward image increases the angle by 2πn. But φ is defined on a neighborhood
U of S1. Then, τ only iterates finitely many times in U . Thus, the total angle is
bounded, and then the map induced by τ in U can be continuously deformed to
the identity. This extends to every map generated by τ .

By the assumption above, any element in Mod2(F ) is represented by a rotation
which can be globally extended to an element in Mod1(F ). The homomorphism α
is surjective; hence, by Theorem 3.5, T2(F ) is path connected. If G is a hyperbolic
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Blashke map, then G restricts to a degree n expanding map on S1, so G is locally
conjugated to F . If G is a Blashke map, then the map α is surjective and T2(G) is
path connected.

The previous example motivates the following proposition.

Theorem 3.7. Let P be a polynomial, then T2(P ) is path connected if, and only
if, the Julia set J(P ) is connected.

Proof. Assume that J(P ) is not connected, then there exist at least two disjoint
Jordan curves γ1 and γ2, contained in the Fatou set, such that P (γ1) = P (γ2), and
the interior of each curve intersects a piece of the Julia set. We can take γ1 and
γ2 such that, the image of these curves do not intersect the postcritical set. Let
φ := (φ, U) be the element in Mod2(P ), defined by a Dehn twist on γ1 and acting
as the identity in γ2. Using dynamics, extend these actions to the grand orbit of
γ1 and γ2. Then, φ cannot be extended continuously to a global map in Mod1(P ),
commuting with dynamics of P . This is because the action, of the extension of φ,
is homotopically different in two preimages of P (γ1).

Now, let us suppose that J(P ) is connected and let φ be an element in Mod2(P ).
We will extend φ to a globally defined map in Mod1(P ). Since P is a polynomial,
∞ is a superattracting fixed point. If deg(P ) = d, by Böttcher’s Theorem, P is
conjugated to zd on the basin of attraction A0(∞).

As we showed in Example 3.6, φ can be extended to A0(∞) and, the action of
φ on A0(∞) is either a rotation or the identity. But J(P ) = ∂(A0(∞)), then the
boundary of each Fatou component is either fixed by φ or, is moved to another
component by a rotation. In either case, φ interchanges Fatou components univa-
lently. Then, it is enough to extend the map on each periodic component. Once it
is done, we use the dynamics of P to extend to preperiodic components.

Let us check that we can extend φ to every periodic Fatou component W . There
are three cases; if W is hyperbolic, then P is conjugated on W to a hyperbolic
Blashke map so, by Example 3.6, φ can be extended to W .

If W is a Siegel disk, then φ is defined on U , a neighborhood of J(P ). We can
modify φ using a homotopy, so that φ leaves invariant a rotational leaf L of the
Siegel foliation of W . Since φ is quasiconformal in U , the restriction of φ to L is
quasi-regular. Hence, we can radially extend φ to a quasiconformal map in W .

Finally, we discuss the case where W is a parabolic Fatou component. Let
K = W \U be the compact set where the map φ is not defined. The neighborhood
U contains a horodisk D, induced by the parabolic dynamics of P in W . It also
contains all the Pn-preimages of K, for a sufficiently large n. Thus Pn has a lifting
from K to U . Let Cv = {v1, v2, ..., vm} be the set of critical values in W , and ∗
be a given point in (U ∩W ) \ Cv. By Hurwitz’ Theorem, the map Pn induces an
isomorphism of the fundamental group π1(W \ Cv, ∗).

Hence, given a point x in K such that P (x) ∈ D. Take y ∈ P−n(x), and define
φ(x) = Pn(φ(y)). As a consequence of the Hurwitz argument above, φ(x) does
not depend on the point y. Moreover, any homotopy that moves the point y, must
move all other elements in P−n(x), since the map induced by Pn in π1(W \ Cv, ∗)
is an isomorphism. Also, P k and φ are defined in U and commute for all k ≥ n.
Thus we have P (φ(x)) = Pn+1(φ(y))) = φ(Pn+1(y)) = φ(P (x)), so the extension
of φ in P−1(D)∩K commutes with P . The extension is quasiconformal since P is
holomorphic. Finally, using the dynamics of P , we extend φ to K. �
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4. Maps with totally disconnected Julia sets

We now restrict the discussion to the case where the Julia set J(R) is homeo-
morphic to a Cantor set. Under these conditions, we show that the Teichmüller
space T2(R) has a product structure. Let us recall the proof of the following known
fact.

Lemma 4.1. Let P be a unimodal polynomial such that J(P ) is totally discon-
nected, then Mod1(P ) is generated by a single Dehn twist.

P
A

Figure 1. Critical annulus for Cantor dynamics.

Proof. Let d be the degree of P . Consider a simple close path γ through the critical
value in the dynamical plane, and such that γ contains the Julia set J(P ) in its
interior. The preimage of γ consist of d closed loops, based on the critical point
(see Figure 1). Let A be the annulus defined by the intersection of the interior of
γ with the exterior of P−1(γ). Any global automorphism of C, commuting with
the dynamics of P , must leave the annulus A invariant. Hence, the group of such
automorphisms is generated by a Dehn twist defined on A. �

Let S be a multiply connected Riemann surface with boundary such that the
connected components of ∂S are Jordan curves. The pure mapping class group
Map(S) is defined by the set of topological automorphisms of S, acting identically
on the boundary, modulo a homotopic relation. This homotopic relation is defined
as follows, f ∼ g are equivalent if, and only if, there exists an isotopy H, from f
to g, such that H|∂S = f |∂S = g|∂S . A classical theorem states that the group
Map(S) is generated by Dehn twists along simple closed curves.

Let P be a unimodal polynomial of degree d, such that the Julia set J(P ) is
homeomorphic to a Cantor set. This is equivalent to saying that the critical orbit
of P escapes to infinity. Let γ be a Jordan curve, whose interior contains the Julia
set and the critical value is outside γ. The preimage P−1(γ) consists of d disjoint
Jordan curves and, together with γ, defines a d+ 1-connected Riemann surface S1
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with boundary. Define recursively Sn by Sn = P−1(Sn−1). Then Map(Sn+1) is
the d-fold product of Map(Sn). We have the following:

Lemma 4.2. Let P be a unimodal polynomial such that J(P ) is homeomorphic to
a Cantor set, then Map(Sn) is embedded into Mod2(P ). Thus lim−→Map(Sn) is also

embedded into Mod2(P ).

Proof. The embedding from Sn to Sn+1, induces a monomorphism from the group
Map(Sn) to the group Map(Sn+1). To conclude the lemma, we show that every
element in Map(Sn) induces a non-trivial element in Mod2(P ). Let τ be a Dehn
twist along a simple closed curve γ. Using dynamics of P , we propagate τ along
the great orbit of γ. This defines an element in Mod2(P ). Thus, we have a map
Φn : Map(Sn) → Mod2(P ). If τ �= τ ′ in Map(Sn), then τ and τ ′ have different
rotation numbers along the same curves. But, this property is preserved by the
dynamics of P and then Φn(τ ) �= Φn(τ

′). So Φn is an injective map. �

Note that if, instead of Map(Sn), we consider the group of automorphisms of
Sn not necessarily acting identically on ∂Sn. Then, on the corresponding product,
it appears to be the action of a braiding group.

It is not clear that every element in Mod2(R), acting identically on J(R), should
be homotopic to some element in Map(Sn). Moreover, Mod2(R) consists of ele-
ments that have a simplicial extension; this relates the modular group Mod2(R)
with Thompson’s group of automorphisms of the Cantor set.

In general, T2(R) is not path connected since T2(R) contains H(T1(R)) and
the orbit of H(T1(R)) under the action of Mod2(R). Locally, the orbit space is
homeomorphic to

Mod2(R)/α(Mod1(R)).

Thus we have the following lemma.

Lemma 4.3. If the homomorphism α is not surjective, the space

Mod2(R)/α(Mod1(R))

is totally disconnected.

Proof. Assume that there is a path σ : [0, 1] → Mod2(R)/α(Mod1(R)). But, the
path σ induces a homotopy between σ(0) and σ(1), for all t ∈ [0, 1]. Hence σ is a
constant map in Mod2(R). �

Theorem 4.4. Let P be a hyperbolic unimodal polynomial such that J(P ) is home-
omorphic to a Cantor set. Then

T2(P ) = H(T1(P ))× {Mod2(P )/α(Mod1(P ))}.
Moreover, the space

Mod2(P )/α(Mod1(P ))

is perfect.

Proof. Let us first check, that the space Mod2(P )/α(Mod1(P )) is perfect. By
Lemma 4.2, Mod2(P ) contains lim−→Map(Sn). Let γ1 be a simple closed curve in

Sn. For every n > 1, choose a component γn of P−n(γ). Let gn be the map, in
Mod2(P ), induced by the Dehn twist of angle 2π along γn and acting as the identity
around all other components of P−n(γ).
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Then, the maps gn are different, and by construction, gn cannot be extended to a
globally defined element in Mod1(P ) commuting with dynamics. Moreover, the gn
belong to different orbits of the action of α(Mod1(P )). Thus, the maps gn induce
different elements in Mod2(P )/α(Mod1(P )). Now, the distortions satisfy K(gn) =
K(g1), for all n. Hence, the map gn(Id) belongs to the ball B(Id,K(g1) + 1) in
T2(P ). This implies that there exists an accumulation point in B(Id,K(g1)+1) and
then there is an accumulation point in Mod2(P )/α(Mod1(P )). Since the action of
the group Mod2(P ) is transitive in Mod2(P )/α(Mod1(P )), it follows that the fiber
Mod2(P )/α(Mod1(P )) is perfect.

By Lemma 4.1, the map α is injective and then H(T1(P )) � T1(P ) by Propo-
sition 3.4. Since Mod1(P ) acts properly discontinuously on T1(P ), there exists
r0 > 0 such that the ball B(Id, r0), in T1(P ), projects injectively into QC(P ). Then
B(Id, r0) embeds injectively on Hyp(P ), and the image of B(Id, r0) in Hyp(P ) is
evenly covered by the projection of T2(P ) into Hyp(P ). Let U be the open compo-
nent, in the fiber of B(Id, r0), containing the identity in T2(P ). By construction,
U ∩ Mod2(P )/α(Mod1(P )) = Id. Then, Id has a neighborhood in T2(P ) of the
form

U ×Mod2(P )/α(Mod1(P )).

The same argument works for every x ∈ T2(P ). Hence T2(P ) is homeomorphic to
the product T1(P )×Mod2(P )/α(Mod1(P )). �

Conceivably, T2(R) is also locally a product when R is a rational map with
disconnected Julia set. However, in this case, a non-trivial monodromy may appear
along H(T1(R)).

Now we will see that the connectivity of J(R) is related to the injectivity of
α : Mod1(R) → Mod2(R).

Theorem 4.5. Let P be a hyperbolic polynomial. The map α : Mod1(P ) →
Mod2(P ) is injective if, and only if, P is unimodal and the Julia set J(P ) is home-
omorphic to a Cantor set.

Proof. Let us assume that P is unimodal, and J(P ) is homeomorphic to a Cantor
set. By Lemma 4.1, the modular group Mod1(P ) is cyclically generated by a Dehn
twist τ , but τ is non-trivial in Mod2(P ). Hence, α is injective.

Reciprocally, by the hyperbolicity of P , the critical point in C is attracted to
a periodic cycle in the plane. Without loss of generality, we can assume that this
periodic cycle is a fixed point z0. The immediate basin of attraction A(z0) is a
topological disk. Let A be an annulus inside A(z0), with center at z0, such that P
maps the outer boundary of A to the inner boundary of A. Consider a Dehn twist
along the core curve of A and propagate it along its grand orbit using dynamics.
The resulting map τ is a non-trivial element of Mod1(P ). However, as we saw in
Example 3.6, near the boundary of A(z0), τ is homotopic to the identity. Thus, τ
is the identity in Mod2(P ) and α is not injective in Mod1(P ). Then, the critical
point is attracted to infinity. Hence, the Julia set J(P ) is homeomorphic to a
Cantor set. �

Example 4.6. A useful example is f10(z) = z2 + 10. In this case, the Julia set
is a Cantor set. So the group Mod1(f10) is cyclically generated by a Dehn twist.
It follows that T1(f10) is homeomorphic to the puncture unit disk. The quotient
space is equivalent to the complement of the Mandelbrot set M . It is well known,



266 CARLOS CABRERA AND PETER MAKIENKO

that C \ M is holomorphically equivalent to the puncture unit disk. Also, since
Mod2(f10) is infinitely generated, the homomorphism α is not surjective.

5. Inverse limits of rational functions and its deformations

Let us consider a rational map R : C̄ → C̄ acting on the Riemann sphere. The
inverse limit, or natural extension of R, is the space

NR = {ẑ = (z1, z2, ...) ∈
∏
n∈N

C̄ : R(zn+1) = zn}

endowed by the Tychonoff topology as a subspace of
∏

n∈N
C̄. There is a family of

natural projections pn : NR → C̄ given by pn(ẑ) = zn, also a natural extension of

R, denoted by R̂ : NR → NR such that pn ◦ R̂ = R ◦ pn. To simplify notation, let
us put p := p1.

The space NR was studied by Lyubich and Minsky in [2]. In that paper, Lyu-
bich and Minsky showed that for a general rational map, the natural extension is
decomposed into two spaces: the regular part RR, which consists of the points that
admit a Riemannian structure compatible with the maps pn and the complement
of RR called the irregular part. A leaf L is a path-connected component in RR.
Every leaf is a Riemann surface. A theorem by Lyubich and Minsky shows that,
in RR, there is a family of leaves, such that, each leaf in this family is conformally
equivalent to the plane and it is dense in NR.

The authors of [2], proved that there is a class of rational maps R, which contains
all hyperbolic maps, such that RR is a lamination by Riemann surfaces. That is,
it admits an atlas of charts (U, φ), where φ is a homeomorphism from U to D× T .
Changes of coordinates are conformal on the horizontal direction and continuous
in the transversal direction. This structure is consistent with the fibration induced
by the family of maps pn.

Let P (R) denote the postcritical set of R. If z0 is a given point in C\P (R), then
a construction due to Poincaré gives a representation of the fundamental group
π1(C \ P (R), z0) into the automorphisms group of the fiber p−1(z0). The image of
this representation is called the monodromy group of NR. Because of the irregular
part, the natural extension is not the suspension of C by the monodromy group on
the fiber p−1(z0).

5.1. Deformations of inverse limits. Consider an open neighborhood U of the
Julia set J(R); we call the fiber p−1(U) a maximal flow box for NR. The action
of the monodromy group induces identifications on a maximal flow box. We say
that NR is represented by a maximal flow box F with the action of monodromy,
if NR coincides with the end compactification of the orbit by the action of this
monodromy on F . A maximal flow box contains almost all irregular points, so we
can always represent NR by a maximal flow box with the action of monodromy. A
maximal flow box contains almost all irregular points, so we can always represent
NR by a maximal flow box and the action of monodromy. When R is hyperbolic,
the regular part is a Riemann surface lamination and the irregular part is finite;
see [2].

Then any conjugacy, around a neighborhood of the Julia set of R, can be ex-
tended to a homeomorphism of the whole laminations. This suggests that we can
extend the equivalence class of elements in T2(R) to equivalence classes of lamina-
tions. In this sense, the monodromy and the dynamics characterize laminations.



ON DYNAMICAL TEICHMÜLLER SPACES 267

Then, deformations of the whole lamination are determined by deformations of a
maximal flow box.

Let U be a neighborhood in NR; we call a plaque a path component of U ∩NR.
A map γ, continuously defined on plaques or open neighborhoods in NR, is called
a fiber automorphism if p ◦ γ = p. Since p is holomorphic in the regular part, it
implies that γ is holomorphic in RR. Given a fiber automorphism and a leaf L in
RR, we denote by γL the restriction of γ to L whenever it is defined.

Definition 5.1. Let U be a neighborhood in C and F = p−1(U) a flow box. A
family {μL} of Beltrami differentials, defined on F , is called compatible with the
fiber structure if, for every fiber automorphism γ and every leaf L in RR, we have
on F ∩ γ(F ) ∩ L,

μL̃(γL)
γ̄′
L

γ′
L

= μL̃,

where γL sends L into L̃.

Let {R−n} be the family of branches of R; then, deck transformations of the
family of branches are fiber automorphisms. Moreover, all fiber automorphisms are
generated by deck transformations of branches of R.

Lemma 5.2. Let μ = {μL} be a family of Beltrami differentials in RR; then, {μL}
is compatible with the fiber structure if, and only if, p∗ ◦ p∗(μ) = μ.

Proof. Assume that μ is compatible with the fiber structure, then it is invariant
under all deck transformation of branches of R. Thus the pushforward p∗(μL) is
independent of the leaf L and, the pullback p∗ ◦ p∗(L) is the same for all leaves L
and coincides with μ.

The equation p∗ ◦ p∗(μ) = μ implies that, the family μ is invariant under deck
transformations of R. Hence μ must be compatible with the fiber structure. �

Since the natural extension NR is a metric space, we will consider quasiconformal
maps, in Pesin’s sense, defined on subsets of NR. Let F be a maximal flow box for
NR and let X(NR, F ) be the space of surjective homeomorphisms φ : NR → NR1

,
quasiconformal in Pesin’s sense, which on F conjugates the respective monodromy
actions. This condition implies that φ induces a family of Beltrami differentials on
F that is compatible with the fiber structure.

We say that two maps φ : NR → NR1
and ψ : NR → NR2

, in X(NR, F ), are
equivalent if there exists a map σ : NR1

→ NR2
, conformal in Pesin’s sense, such

that ψ = σ ◦ φ and σ is homotopic to the identity, with homotopy that commutes
with dynamics and monodromy actions.

We define the space of deformations of NR, and denote it by Def(NR, F ), as
the set X(NR, F ) modulo the equivalence relation above. Since we are considering
surjective homeomorphisms φ : NR → NR1

, it follows that R and R1 have the same
degree.

Note that the image of F under any map in Def(NR, F ) is a maximal flow box
of some rational map. We have the following:

Theorem 5.3. Let R be a map that is represented by a maximal flow box. Then,
there is a bijection between Def(NR, F ) and the space T2(R).

Proof. Let (h, U) be an element in T2(R), then h induces a Beltrami differential ν
around a neighborhood U of J(R). We consider the family of Beltrami differentials
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μ on a neighborhood of p−1(J(R)). Since R is represented by a maximal flow box,
we can use dynamics and monodromy to propagate μ on all the inverse limits. By
construction p∗ ◦ p∗(μ) = μ, so by Lemma 5.2, the resulting family of Beltrami
differentials is compatible with the fiber structure. Thus μ induces an element in
Def(NR, F ) and, the construction only depends on the class of (h, U) in T2(R).

Now, let φ be a representative of a point in Def(NR, F ). Since φ conjugates
dynamics and the monodromy actions, we can push φ, using p, to get a quasicon-
formal map h : U → C, conjugating the corresponding rational maps. Then, (h, U)
defines an element in T2(R). �
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