The Horofunction boundary of the Heisenberg Group: The Carnot-Carathéodory metric
HTML articles powered by AMS MathViewer
- by Tom Klein and Andrew Nicas
- Conform. Geom. Dyn. 14 (2010), 269-295
- DOI: https://doi.org/10.1090/S1088-4173-2010-00217-1
- Published electronically: November 17, 2010
- PDF | Request permission
Abstract:
We find the horofunction boundary of the $(2n+1)$-dimensional Heisenberg group with the Carnot-Carathéodory distance and show that it is homeomorphic to a $2n$-dimensional disk and that the Busemann points correspond to the $(2n-1)$-sphere boundary of this disk. We also show that the compactified Heisenberg group is homeomorphic to a $(2n+1)$-dimensional sphere. As an application, we find the group of isometries of the Carnot-Carathéodory distance.References
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Ovidiu Calin, Der-Chen Chang, and Peter Greiner, Geometric mechanics on the Heisenberg group, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 3, 185–252. MR 2165285
- Luca Capogna, Donatella Danielli, Scott D. Pauls, and Jeremy T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007. MR 2312336, DOI 10.1007/978-3-7643-8133-2
- M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183–213. MR 624814
- Ursula Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geom. 32 (1990), no. 3, 819–850. MR 1078163
- Iwao Kishimoto, Geodesics and isometries of Carnot groups, J. Math. Kyoto Univ. 43 (2003), no. 3, 509–522. MR 2028665, DOI 10.1215/kjm/1250283693
- Tom Klein and Andrew Nicas, The horofunction boundary of the Heisenberg group, Pacific J. Math. 242 (2009), no. 2, 299–310. MR 2546714, DOI 10.2140/pjm.2009.242.299
- Adam Korányi, Geometric properties of Heisenberg-type groups, Adv. in Math. 56 (1985), no. 1, 28–38. MR 782541, DOI 10.1016/0001-8708(85)90083-0
- Marc A. Rieffel, Group $C^*$-algebras as compact quantum metric spaces, Doc. Math. 7 (2002), 605–651. MR 2015055
- Cormac Walsh, The horofunction boundary of finite-dimensional normed spaces, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 3, 497–507. MR 2329698, DOI 10.1017/S0305004107000096
Bibliographic Information
- Tom Klein
- Affiliation: 325 Island Drive, Apt 6, Madison, Wisconsin 53705
- Email: klein@math.binghamton.edu
- Andrew Nicas
- Affiliation: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- MR Author ID: 131000
- Email: nicas@mcmaster.ca
- Received by editor(s): February 26, 2010
- Published electronically: November 17, 2010
- Additional Notes: The second author was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 14 (2010), 269-295
- MSC (2010): Primary 20F65, 22E25, 53C23, 53C70
- DOI: https://doi.org/10.1090/S1088-4173-2010-00217-1
- MathSciNet review: 2738530