Lattès-type mappings on compact manifolds
HTML articles powered by AMS MathViewer
- by Laura Astola, Riikka Kangaslampi and Kirsi Peltonen
- Conform. Geom. Dyn. 14 (2010), 337-367
- DOI: https://doi.org/10.1090/S1088-4173-2010-00220-1
- Published electronically: December 29, 2010
- PDF | Request permission
Abstract:
A uniformly quasiregular mapping acting on a compact Riemannian manifold distorts the metric by a bounded amount, independently of the number of iterates. Such maps are rational with respect to some measurable conformal structure and there is a Fatou-Julia type theory associated with the dynamical system obtained by iterating these mappings. We study a rich subclass of uniformly quasiregular mappings that can be produced using an analogy of classical Lattès’ construction of chaotic rational functions acting on the extended plane $\bar {\mathbb {C}}$. We show that there is a plenitude of compact manifolds that support these mappings. Moreover, we find that in some cases there are alternative ways to construct this type of mapping with different Julia sets.References
- Zoltán Balogh, Fässler Katrin, and Kirsi Peltonen, Uniformly quasiregular mappings on the compactified Heisenberg group, J. Geom. Anal. (2010) DOI 10.1007/S12220-010-9205-5.
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Aimo Hinkkanen, Gaven J. Martin, and Volker Mayer, Local dynamics of uniformly quasiregular mappings, Math. Scand. 95 (2004), no. 1, 80–100. MR 2091483, DOI 10.7146/math.scand.a-14450
- Tadeusz Iwaniec and Gaven Martin, Quasiregular semigroups, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 241–254. MR 1404085
- Tadeusz Iwaniec and Gaven Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913
- Jorma Jormakka, The existence of quasiregular mappings from $\textbf {R}^3$ to closed orientable $3$-manifolds, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 69 (1988), 44. MR 973719
- Riikka Kangaslampi, Uniformly quasiregular mappings on elliptic Riemannian manifolds, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes (2008), no. 151, 69.
- S. Lattès, Sur l’itération des substitutions rationnelles et les fonctions de Poincarè, C. R. Acad. Sci. Paris 166 (1918), 26–28.
- G. J. Martin, Branch sets of uniformly quasiregular maps, Conform. Geom. Dyn. 1 (1997), 24–27. MR 1454921, DOI 10.1090/S1088-4173-97-00016-7
- Volker Mayer, Uniformly quasiregular mappings of Lattès type, Conform. Geom. Dyn. 1 (1997), 104–111. MR 1482944, DOI 10.1090/S1088-4173-97-00013-1
- Volker Mayer, Quasiregular analogues of critically finite rational functions with parabolic orbifold, J. Anal. Math. 75 (1998), 105–119. MR 1655826, DOI 10.1007/BF02788694
- Kirsi Peltonen, Examples of uniformly quasiregular mappings, Conform. Geom. Dyn. 3 (1999), 158–163. MR 1718708, DOI 10.1090/S1088-4173-99-00053-3
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- Seppo Rickman, Simply connected quasiregularly elliptic 4-manifolds, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 97–110. MR 2210111
- Willi Rinow, Die innere Geometrie der metrischen Räume, Die Grundlehren der mathematischen Wissenschaften, Band 105, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0123969, DOI 10.1007/978-3-662-11499-5
- Pekka Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 73–78. MR 595178, DOI 10.5186/aasfm.1980.0530
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Bibliographic Information
- Laura Astola
- Affiliation: Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Email: l.j.astola@tue.nl
- Riikka Kangaslampi
- Affiliation: Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
- Email: riikka.kangaslampi@tkk.fi
- Kirsi Peltonen
- Affiliation: Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
- Email: kirsi.peltonen@helsinki.fi
- Received by editor(s): August 23, 2010
- Published electronically: December 29, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 14 (2010), 337-367
- MSC (2010): Primary 53A30, 53C20; Secondary 30C65
- DOI: https://doi.org/10.1090/S1088-4173-2010-00220-1
- MathSciNet review: 2746722