A uniform contraction principle for bounded Apollonian embeddings
HTML articles powered by AMS MathViewer
- by Loïc Dubois and Hans Henrik Rugh
- Conform. Geom. Dyn. 15 (2011), 64-71
- DOI: https://doi.org/10.1090/S1088-4173-2011-00226-8
- Published electronically: June 28, 2011
- PDF | Request permission
Abstract:
Let $\widehat {H}=H \cup \{\infty \}$ denote the standard one-point completion of a real Hilbert space $H$. Given any non-trivial proper subset $U\subset \widehat {H}$ one may define the so-called “Apollonian” metric $d_U$ on $U$. When $U\subset V \subset \widehat {H}$ are nested proper subsets we show that their associated Apollonian metrics satisfy the following uniform contraction principle: Let $\Delta =\mathrm {diam}_{V}(U) \in [0,+\infty ]$ be the diameter of the smaller subsets with respect to the large. Then for every $x,y\in U$ we have \[ d_V(x,y) \leq \tanh \frac {\Delta }{4} \ \ d_U(x,y) .\] In dimension one, this contraction principle was established by Birkhoff [Bir57] for the Hilbert metric of finite segments on ${{\mathbb R}\textrm {P}}^1$. In dimension two it was shown by Dubois in [Dub09] for subsets of the Riemann sphere $\widehat {\mathbb {C}}\sim \widehat {\mathbb {R}^2}$. It is new in the generality stated here.References
- Viviane Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1793194, DOI 10.1142/9789812813633
- D. Barbilian, Einordnung von Lobatchewsky’s Maßbestimmung in gewisse allgemeine Metric der Jordanschen Bereiche, Casopsis Mathematiky a Fysiky, 64, 182–183 (1934–35).
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- A. F. Beardon, The Apollonian metric of a domain in $\textbf {R}^n$, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995) Springer, New York, 1998, pp. 91–108. MR 1488447
- Garrett Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219–227. MR 87058, DOI 10.1090/S0002-9947-1957-0087058-6
- A. Cayley, A sixth memoirs upon quantics, Phil. Trans. Royal Soc. of London 149, 61–90, Collected Math Papers, vol. 2 (1859).
- Loïc Dubois, Projective metrics and contraction principles for complex cones, J. Lond. Math. Soc. (2) 79 (2009), no. 3, 719–737. MR 2506695, DOI 10.1112/jlms/jdp008
- Peter A. Hästö, The Apollonian inner metric, Comm. Anal. Geom. 12 (2004), no. 4, 927–947. MR 2104081, DOI 10.4310/CAG.2004.v12.n4.a7
- D. Hilbert, Über die gerade Linie als kürzeste Verbindung zweier Punkte. (Aus einem an Herrn F. Klein gerichten Briefe), Math. Ann., 46, 91–96 (1895).
- R. Daniel Mauldin and Mariusz Urbański, Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packing, Adv. Math. 136 (1998), no. 1, 26–38. MR 1623671, DOI 10.1006/aima.1998.1732
- R. Nevanlinna, Analytic functions, Princeton Mathematical Series, Number 24, Princeton, 1960.
- Hans Henrik Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency, Ann. of Math. (2) 168 (2008), no. 3, 695–748. MR 2456882, DOI 10.4007/annals.2008.168.695
- Hans Henrik Rugh, Cones and gauges in complex spaces: spectral gaps and complex Perron-Frobenius theory, Ann. of Math. (2) 171 (2010), no. 3, 1707–1752. MR 2680397, DOI 10.4007/annals.2010.171.1707
Bibliographic Information
- Loïc Dubois
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, Finland FI-00014
- Email: loic.dubois@helsinki.fi
- Hans Henrik Rugh
- Affiliation: University of Cergy-Pontoise, CNRS UMR 8088, France.
- Email: hhrugh@math.u-cergy.fr
- Received by editor(s): February 19, 2011
- Published electronically: June 28, 2011
- Additional Notes: This research was partially funded by the European Research Council.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 15 (2011), 64-71
- MSC (2010): Primary 30F45, 53A30; Secondary 47H09, 30C35
- DOI: https://doi.org/10.1090/S1088-4173-2011-00226-8
- MathSciNet review: 2833473