Itération d’applications rationnelles dans les espaces de matrices
HTML articles powered by AMS MathViewer
- by Dominique Cerveau and Julie Déserti
- Conform. Geom. Dyn. 15 (2011), 72-112
- DOI: https://doi.org/10.1090/S1088-4173-2011-00228-1
- Published electronically: August 1, 2011
- PDF | Request permission
Abstract:
The iteration of rational maps is well understood in dimension $1$ but less so in higher dimensions. We study some maps on spaces of matrices which present a weak complexity with respect to the ring structure. First, we give some properties of certain rational maps; the simplest example is the rational map which sends the matrix $\mathrm {M}$ onto $\mathrm {M}^2$ for which we exhibit some dynamical properties. Finally, we deal with some small perturbations of this map.References
- Eric Bedford and John Smillie, Fatou-Bieberbach domains arising from polynomial automorphisms, Indiana Univ. Math. J. 40 (1991), no. 2, 789–792. MR 1119197, DOI 10.1512/iumj.1991.40.40035
- F. Berteloot and J. J. Lœb, Holomorphic equivalence between basins of attraction in $\mathbf C^2$, Indiana Univ. Math. J. 45 (1996), no. 2, 583–589. MR 1414343, DOI 10.1512/iumj.1996.45.1970
- D. Cerveau and A. Lins Neto, Hypersurfaces exceptionnelles des endomorphismes de $\textbf {C}\textrm {P}(n)$, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 2, 155–161 (French, with English and French summaries). MR 1785266, DOI 10.1007/BF01244241
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 1980 edition. MR 2541754, DOI 10.1007/978-0-8176-4927-2
- Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286, DOI 10.1007/BFb0080338
- Shmuel Friedland and John Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9 (1989), no. 1, 67–99. MR 991490, DOI 10.1017/S014338570000482X
- R. Galeeva and A. Verjovsky, Quaternion dynamics and fractals in $\textbf {R}^4$, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1771–1775. Discrete dynamical systems. MR 1728736, DOI 10.1142/S0218127499001255
- B. Malgrange, Frobenius avec singularités. II. Le cas général, Invent. Math. 39 (1977), no. 1, 67–89 (French). MR 508170, DOI 10.1007/BF01695953
- John Milnor, Pasting together Julia sets: a worked out example of mating, Experiment. Math. 13 (2004), no. 1, 55–92. MR 2065568, DOI 10.1080/10586458.2004.10504523
Bibliographic Information
- Dominique Cerveau
- Affiliation: Membre de l’Institut Universitaire de France. IRMAR, UMR 6625 du CNRS, Université de Rennes 1, 35042 Rennes, France
- Email: dominique.cerveau@univ-rennes1.fr
- Julie Déserti
- Affiliation: Institut de Mathématiques de Jussieu, Université Paris 7, Projet Géométrie et Dynamique, Site Chevaleret, Case 7012, 75205 Paris Cedex 13, France
- Address at time of publication: Universität Basel, Mathematisches Institut, Rheinsprung 21, CH-4051, Basel, Switzerland
- Email: deserti@math.jussieu.fr
- Received by editor(s): March 7, 2011
- Published electronically: August 1, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Conform. Geom. Dyn. 15 (2011), 72-112
- MSC (2010): Primary 14E05, 32H50, 37B05
- DOI: https://doi.org/10.1090/S1088-4173-2011-00228-1
- MathSciNet review: 2833474