Triviality of fibers for Misiurewicz parameters in the exponential family
HTML articles powered by AMS MathViewer
- by Anna Miriam Benini
- Conform. Geom. Dyn. 15 (2011), 133-151
- DOI: https://doi.org/10.1090/S1088-4173-2011-00227-X
- Published electronically: September 20, 2011
- PDF | Request permission
Abstract:
We consider the family of holomorphic maps $e^z+c$ and show that fibers of postsingularly finite parameters are trivial. This can be considered as the first and simplest class of non-escaping parameters for which we can obtain results about triviality of fibers in the exponential family.References
- I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49–77. MR 752391, DOI 10.5186/aasfm.1984.0903
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Dynamical convergence of polynomials to the exponential, J. Differ. Equations Appl. 6 (2000), no. 3, 275–307. MR 1785056, DOI 10.1080/10236190008808229
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Robert L. Devaney and MichałKrych, Dynamics of $\textrm {exp}(z)$, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, DOI 10.1017/S014338570000225X
- Adrien Douady, John H. Hubbard, Étude dynamique des polynômes complexes, Prépublications mathématiques d’Orsay (1984/1985), no. 2/4.
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- Markus Förster, Lasse Rempe, and Dierk Schleicher, Classification of escaping exponential maps, Proc. Amer. Math. Soc. 136 (2008), no. 2, 651–663. MR 2358507, DOI 10.1090/S0002-9939-07-09073-9
- Markus Förster and Dierk Schleicher, Parameter rays in the space of exponential maps, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 515–544. MR 2486782, DOI 10.1017/S0143385708000394
- Lisa R. Goldberg and John Milnor, Fixed points of polynomial maps. II. Fixed point portraits, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 51–98. MR 1209913, DOI 10.24033/asens.1667
- John Hubbard, Dierk Schleicher, and Mitsuhiro Shishikura, Exponential Thurston maps and limits of quadratic differentials, J. Amer. Math. Soc. 22 (2009), no. 1, 77–117. MR 2449055, DOI 10.1090/S0894-0347-08-00609-7
- Bastian Laubner, Dierk Schleicher, and Vlad Vicol, A combinatorial classification of postsingularly finite complex exponential maps, Discrete Contin. Dyn. Syst. 22 (2008), no. 3, 663–682. MR 2429858, DOI 10.3934/dcds.2008.22.663
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- John Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account, Astérisque 261 (2000), xiii, 277–333 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755445
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Carsten Lunde Petersen and Gustav Ryd, Convergence of rational rays in parameter spaces, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 161–172. MR 1765088
- Lasse Rempe, Dynamics of exponential maps, Doctoral Thesis, Christian-Albrechts-Universität Kiel (2003), http://e-diss.uni-kiel.de/diss781/.
- Lasse Rempe, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2639–2648. MR 2213743, DOI 10.1090/S0002-9939-06-08287-6
- Lasse Rempe, Topological dynamics of exponential maps on their escaping sets, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1939–1975. MR 2279273, DOI 10.1017/S0143385706000435
- Lasse Rempe and Dierk Schleicher, Combinatorics of bifurcations in exponential parameter space, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 317–370. MR 2458808, DOI 10.1017/CBO9780511735233.014
- Lasse Rempe and Dierk Schleicher, Bifurcation loci of exponential maps and quadratic polynomials: local connectivity, triviality of fibers, and density of hyperbolicity, Holomorphic dynamics and renormalization, Fields Inst. Commun., vol. 53, Amer. Math. Soc., Providence, RI, 2008, pp. 177–196. MR 2477423, DOI 10.1007/s00222-008-0147-5
- Lasse Rempe, Sebastian van Strien, Density of hyperbolicity for classes of real transcendental entire functions and circle maps, arXiv:1005.4627v2 [math.DS].
- Dierk Schleicher, On the dynamics of iterated exponential maps, Habilitation Thesis, TU Munchen (1999).
- Dierk Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 477–517. MR 2112117, DOI 10.1090/pspum/072.1/2112117
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
- Dierk Schleicher and Johannes Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 327–354. MR 1996442
Bibliographic Information
- Anna Miriam Benini
- Affiliation: Department of Mathematics, Stony Brook University, Building 5-116, Stony Brook, New York 11794
- Received by editor(s): September 9, 2009
- Received by editor(s) in revised form: March 15, 2010, May 17, 2010, September 29, 2010, October 14, 2010, October 19, 2010, and May 5, 2011
- Published electronically: September 20, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 15 (2011), 133-151
- MSC (2010): Primary 37F10, 37F20, 37F45
- DOI: https://doi.org/10.1090/S1088-4173-2011-00227-X
- MathSciNet review: 2833476