Subgroups of $\text \textit {PSL}(3,\mathbb {C})$ with four lines in general position in its limit set
HTML articles powered by AMS MathViewer
- by W. Barrera, A. Cano and J. P. Navarrete PDF
- Conform. Geom. Dyn. 15 (2011), 160-176 Request permission
Abstract:
In this article we provide an algebraic characterization of the subgroups of $PSL(3,\Bbb {C})$ for which the maximum number of complex lines in general position contained in its limit set, according to Kulkarni, is equal to four. Also, we give an explicit description of the discontinuity region, according to Kulkarni, of such groups.References
- Waldemar del Jesús Barrera Vargas, Angel Cano Cordero, and Juan Pablo Navarrete Carrillo, The limit set of discrete subgroups of $\textrm {PSL}(3,\Bbb C)$, Math. Proc. Cambridge Philos. Soc. 150 (2011), no. 1, 129–146. MR 2739076, DOI 10.1017/S0305004110000423
- A. Cano, On Discrete Subgroups of automorphism of $\mathbb {P}^2_{\mathbb {C}}$, preprint, 2009, http://arxiv.org/ abs/0806.1336.
- A. Cano, J. Seade, J. P. Navarrete, Complex Kleinian Groups, preprint, 2009, http://www. matcuer.unam.mx/\symbol{126}jseade/Libro-Klein.pdf.
- Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR 1786869
- É. Ghys, A. Haefliger, and A. Verjovsky (eds.), Group theory from a geometrical viewpoint, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1170362, DOI 10.1142/1235
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- R. S. Kulkarni, Groups with domains of discontinuity, Math. Ann. 237 (1978), no. 3, 253–272. MR 508756, DOI 10.1007/BF01420180
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- J.-P. Navarrete, On the limit set of discrete subgroups of $\textrm {PU}(2,1)$, Geom. Dedicata 122 (2006), 1–13. MR 2295538, DOI 10.1007/s10711-006-9051-6
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730, DOI 10.1007/978-1-4757-4013-4
Additional Information
- W. Barrera
- Affiliation: Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte Tablaje Cat 13615, Mérida, Yucatán, México
- Email: bvargas@uady.mx
- A. Cano
- Affiliation: Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
- Address at time of publication: Instituto de Matemáticas (Unidad Cuernavaca), UNAM, Av. Universidad s/n Col. Lomas de Chamilpa, C.P. 62210, Cuernavaca, Morelos, México
- Email: angel@impa.br, angel@matcuer.unam.mx
- J. P. Navarrete
- Affiliation: Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte Tablaje Cat 13615, Mérida, Yucatán, México
- Email: jp.navarrete@uady.mx
- Received by editor(s): November 25, 2010
- Published electronically: October 11, 2011
- Additional Notes: The second author was partially supported by grants from CNPq.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 15 (2011), 160-176
- MSC (2010): Primary 37F30, 32Q45; Secondary 37F45, 22E40
- DOI: https://doi.org/10.1090/S1088-4173-2011-00231-1
- MathSciNet review: 2846306